ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Основу наследственного аппарата бактерий, как и всех других организмов, составляет ДНК (у РНК-содержащих вирусов — РНК).Наряду с этим наследственный аппарат бактерий и возможности его изучения имеют р яд особенностей: · бактерии — гаплоидные организмы, т. е. они имеют 1 хромосому. В связи с этим при наследовании признаков отсутствует явление доминантности; · бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации. · Высокая разрешающая способность методов генетического анализа бактерий и вирусов, позволяющая обнаружить их мутантов с частотой 10-9 и ниже. · Половая дифференциация, заключающаяся в существовании донорных реципиентных бактериальных клеток, соответственно отдающих или воспринимающих генетическую информацию. · Наличие у бактерий обособленных фрагментов ДНК – плазмид, транспозонов и Is-последовательностей.
Генетическая система бактерий состоит из ядерных и внеядерных структур. Аналог ядра прокариотов значительно отличается от ядра эукариотических клеток. Он представлен нуклеоидом, лишенным оболочки и включающем в себя почти всю ДНК бактерии. Хотя бактерии являются гаплоидными организмами, т.е. имеют один набор генов, содержание ДНК у них непостоянно, оно может при благоприятных условиях достигать значений, эквивалентных по массе 2, 4, 6 и даже 8 хромосомам. Бактериальная хромосома состоит из одной двунитевой молекулы ДНК кольцевой формы. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы. Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеются дезоксирибозный 3' -конец и фосфатный 5' -конец. Нуклеотиды соединяются в полинуклеотидную цепочку фосфодиэфирными связями между 5' -концом одного нуклеотида и 3' -концом другого. Соединение между двумя цепочками обеспечивается водородными связями комплементарных азотистых оснований: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом конце линейной молекулы ДНК расположены 5' -конец одной цепи и 3' -конец другой цепи. Реплика́ция ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет фермент ДНК-полимераза. Транскри́пция — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК. Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'
Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которая определяет последовательность аминокислотных остатков в молекуле белка. Каждому белку соответствует свой ген, т.е., дискретный участок на ДНК, отличающийся числом и специфичностью последовательности нуклеотидов. Бактериальная хромосома содержит до 4000 отдельных генов. Совокупность всех генов называется геномом. Внешнее проявление генома называется фенотипом. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3 х 10 8 до 2,5 х 10 9 Д. Бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением. У бактерий в естественных условиях передача генетической информации происходит не только по вертикали, т.е. от родительской клетки к дочерним, но и по горизонтали с помощью различных механизмов: конъюгации, сексдукции, трансдукции,трансформации. У бактерий очень часто помимо хромосомного генома имеется дополнительный плазмидный геном, наделяющий их важными биологическими свойствами, специфическим 9приобретенным) иммунитетом к различным антибиотикам и другим химиопрепаратам. Большая роль в изменчивости бактерий и других организмов принадлежит так называемым транспонируемым генетическим элементам, т.е. генетическим структурам, способным в интактной форме перемещаться внутри данного генома или переходить от одного генома к другому, например от плазмидного генома к бактериальному и наоборот. Различают четыре класса транспонируемых элементов: 1) IS-последовательности; 2) транспозоны; 3) эписомы 4) плазмиды.
IS-(инсерционные) последовательности (англ. insertion-вставка) – это короткие фрагменты ДНК,мигрирующие от одной хромосомы к другой, или между хромосомой и плазмидой. IS-элементы имеют обычно размеры, не превышающие 2 тысяч пар оснований, или 2 кб(килобаза-тысяча пар оснований). IS-элементы несут только один ген, кодирующий белок транспозазу, с помощью которой IS-элементы встраиваются в различные участки хромосомы. Их обозначают цифрами: IS1, IS2, IS3 и т.д. Содержат только гены, необходимые для собственной миграции. Фенотипических признаков не кодируют, самостоятельно не реплицируются. Функции IS-элементов: 1. Координировать взаимодействие транспозонов, плазмид и умеренных фагов как между собой, так и с хромосомой бактериальной клетки и обеспечивать их рекомбинацию. 2. Вызывать инактивацию гена, в котором произошла интеграция IS-последовательности («выключение гена»), либо, будучи встроенными в определенном положении в бактериальную хромосому, служить промотором (участками ДНК, регулирующих экспрессию подлежащих структурных генов бактерий – реципиентов), который включает транскрипцию соответствующих генов, выполняя регуляторную функцию. 3. Индуцировать мутации типа делеций или инверсий при перемещении и дупликации в 5-9 парах нуклеотидов при включении в бактериальную хромосому. Они не несут структурных (кодирующих белков) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).
Транспозоны – это более крупные молекулы ДНК. Так же как IS-последовательности являются мигрирующими генетическими элементами. Представляют собой нуклеотидные последовательности, включающие от 2000 до 20500 пар нуклеотидов, которые несут генетическую информацию, необходимую для транспозиции. При включении в бактериальную ДНК они вызывают в ней дупликации, а при перемещении – делеции и инверсии. Они реплицируются только в составе бактериальной хромосомы. При этом новые копии транспозонов могут мигрировать в некоторые плазмиды и ДНК фагов, которые, проникая в бактериальные клетки, способствуют их распространению в популяции. Т.о. важнейшим свойством транспозонов является их способность к перемещению с одного репликона(хромосомная ДНК) на другой (плазмида) и наоборот. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Кроме того некоторые транспозоны, так же как плазмиды, выполняют регуляторную и кодирующую функцию. В частности, они могут нести информацию для синтеза бактериальных токсинов, а также ферментов разрушающих или модифицирующих антибиотики. Транспозоны имеют особые концевые структуры нескольких типов, которые являются маркерами, позволяющими отличать их от других фрагментов ДНК. При интеграции транспозонов в хромосому клетки животных или человека они приобретают удивительное сходство с провирусами, находящимися в составе их хромосом. Транспозоны, как и IS-последовательности обозначают порядковым номером:Tn1, Tn2, Tn3 и т.д. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации.
Эписомы(умеренные лизогенные и дефектные фаги). Встраиваясь в хромосому, эти фаги вызывают лизогению бактерий, которые могут приобретать новые признаки. Собственно эписомы – это вирусы, обладающие, подобно другим транспонируемым элементам, способностью в интактной форме переходить из одного генома в другой. Изменчивость лизогенных бактерий связана либо с приобретением генов, переносимых данными фагами от их предыдущих хозяев (бактерий-доноров), либо с экспрессией «молчащих» генов бактерий-реципиентов. В последнем случае фаговая ДНК, встраиваясь вблизи поврежденного промотора, заменяет его. При этом синтезируются определенные продукты, например протоксины дифтерийных бактерий, ряда клостридий и др. Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликации плазмиды могут давать явление амплификации: одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака. Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными или конъюгативными, которыеимеют более крупные размеры и наряду с генетической областью, контролирующей их репликацию, содержат также так называемую tra-область или tra-оперон(англ. transfer перенос). который определяет способность клетки, содержащей плазмиду, быть генетическим донором, т.е. вступать в конъюгацию с другой клеткой (реципиентом) и передавать ей свой генетический материал (плазмидную либо хромосомную ДНК). Под контролем tra-генов синтезируются поверхностные «половые» ворсинки (F-пили) клетки-донора, необходимые для ее конъюгации с клеткой-реципиентом, а также ферменты, обеспечивающие метаболизм ДНК в процессе конъюгации. Неконъюгативные плазмиды. обычно не содержат tra-оперона и поэтому не могут самостоятельно передаваться из одной клетки в другую. Однако передача неконъюгативной плазмиды возможна за счет продуктов (белков) tra-генов конъюгативной плазмиды, находящейся вместе с неконъюгативной плазмидой в одной и той же клетке. Конъюгативные плазмиды переносятся от бактерии к бактерии внутри вида или между представителями близкородственных видов в процессе конъюгации. Чаще всего конъюгативными плазмидами являются F - или R -плазмиды. Подобные плазмиды относительно крупные (25-150 млн Д) и часто выявляются у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1-2 копий на клетку и их репликация тесно связана с репликацией бактериальной хромосомы. Неконъюгативные плазмиды обычно имеют небольшие размеры и характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Мелкие плазмиды могут присутствовать в больших количествах (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве во время клеточного деления. При наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид донор может передавать и неконъюгативные плазмиды за счет связывания генетического материала последних с факторами, обеспечивающими их перенос в процессе конъюгации. Самостоятельная репликация плазмидной ДНК способствует ее сохранению и распространению в потомстве. Встраивание плазмид, так же как и профагов, происходит только в гомологичные участки бактериальной хромосомы, в то время как IS-последовательностей и транспозонов – в любой ее участок.
В зависимости от свойств признаков, которые кодируют плазмиды, различают: 1) R-плазмиды. Известно большое количество R-плазмид, определяющих устойчивость бактерий-хозяев к разнообразным лекарственным препаратам. Передача R-плазмид от одних бактерий к другим привела к их широкому распространению среди патогенных и условно-патогенных бактерий, что чрезвычайно осложнило химиотерапию вызываемых ими заболеваний. R-плазмиды имеют сложное молекулярное строение. В их состав входят:r-ген, который может содержать более мелкие мигрирующие элементы – IS-последовательности, транспозоны и tra-опероны. R-ген, ответственный за устойчивость бактерий к какому-либо антибиотику или модификацию. Значительное число r-генов является транспозонами, которые могут перемещаться от плазмиды- носителя в другие репликоны. В одном r-гене может содержаться несколько транспозонов, контролирующих устойчивость к разным антибиотикам. Этим объясняется множественная лекарственная резистентность. Tra-оперон, обеспечивающий конъюгативность плазмиды, входит в состав –плазмид грамотрицательных бактерий.Грамположительные бактерии содержат в основном неконъюгативные плазмиды, которые могут передаваться от одной бактерии к другой путем трансдукции. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;
2) F-плазмиды.. Представляет собой циркулярно замкнутую нить ДНК с молекулярной массой 60х106 Она контролирует синтез половых ворсинок (sex или F-pili), которые способствуют эффективному спариванию бактерий-доноров с реципиентными клетками при конъюгации. Данная плазмида реплицируется в независимом от хромосомы состоянии и передается при конъюгации в клетки бактерий-реципиентов.Перенос генетического материала (ДНК) детерминируется tra-опероном F-плазмиды (англ. transfer перенос), обеспечивающим ее конъюгативность. F-плазмиду можно удалить (элиминировать) из клетки, обработав последнюю некоторыми веществами, например акриловым оранжевым, в результате чего клетки теряют свойства донора. Сравнительно легкая элиминация и очень быстрая и эффективная передача F-плазмиды реципиентным клеткам дали основание считать, что она располагается в цитоплазме бактерий вне хромосомы. Однако F-плазмида может встраиваться в бактериальную хромосому и находиться с ней в интегрированном состоянии
3) Col-плазмиды. Кодируют синтез бактериоцинов. Это бактерицидные вещества, действующие на близкородственные бактерии; Бактериоцины обнаружены у кишечных бактерий (колицины), бактерий чумы (пестицины), холерных вибрионов (вибриоцины), стафилококков (стафилоцины). Колицины энтеробактерий (продуцируемые под контролем колициногенных плазмид) представляют собой вещества белковой природы. Известно более 25 типов колицинов, различающихся по своим физико-химическим свойствам и по способности адсорбироваться на определенных участках поверхности бактериальных клеток. Они обозначаются латинскими буквами A, B, C, D, E1, E2, K и т.д. При обычных условиях культивирования в большинстве клеток бактериальной популяции, содержащей колициногенные особи, синтеза колицина не происходит. Примерно в одной из 1000 клеток отмечается так называемая спонтанная продукция колицина. Однако количество колицинпродуцирующих клеток может быть резко увеличено при обработке бактерий УФ-лучами и некоторыми другими агентами. Механизм бактерицидного действия колицинов неодинаков. Показано, что после адсорбции на рецепторах наружной мембраны бактерий один из колицинов (Е3) нарушает функцию рибосом, другой (Е ) является ферментом – эндодезоксирибонуклеазой. Имеются колицины, действующие на цитоплазматическую мембрану бактерий. Колициногенные (Col) плазмиды находятся в клетках энтеробактерий в автономном состоянии и передаются при конъюгацииибез сцепления с хромосомой. Однако некоторые из них (ColV, ColB) могут встраиваться в бактериальную хромосому и находиться в ней в интегрированном состоянии. Они так же как F-плазмиды, передаются путем конъюгации в реципиентные клетки, благодаря имеющемуся у них tra-оперону. Широкое распространение бактериоциногении среди микрофлоры организма человека имеет экологическое значение как один из факторов, влиляющих на формирование микробных биоценозов. Вместе с тем колицины, продуцируемые кишечной палочкой – нормальным обитателем кишечника, могут губительно действовать на патогенные энтеробактерии, попавшие в кишечник, способствуя нормализации его естественного микробиоценоза. Способность продуцировать различные типы колицинов используется для эпидемиологического маркирования. Такое типирование осуществляется путем определения типа Col-плазмиды (колициногенотипирование) или типа колицина, образуемого патогенными бактериями (колицинотипирование). 4 ) Плазмиды патогенности: · Tox-плазмиды. Кодируют выработку экзотоксинов; · Hly-плазмиды. Кдирует синтез гемолизинов
5) Плазмиды биодеградации. Кодируют ферменты деградации (утилизации)природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида. Патогенным бактериям подобные плазмиды придают преимущества перед представителями аутомикрофлоры. Например, урологические штаммы кишечных палочек содержат плазмиду гидролизации мочевины. Плазмиды биодеградации несут информацию об утилизации ряда сахаров(лактоза, сахароза, раффиноза и др.) и образовании протеолитических ферментов.
Криптические (скрытые) плазмиды не содержат генов, которые можно было бы обнаружить по их фенотипическому проявлению. Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды.
Не нашли, что искали? Воспользуйтесь поиском:
|