Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Сила сварочного тока




Сила сварочного тока IСВ является одним из основных параметров режима КТС, поскольку при неизменной длительности его импульса tСВ определяет не только количество энергии, выделяющейся в зоне сварки, но и, что наиболее важно для процесса формирования соединения, градиент её увеличения по времени. Вследствие этого именно сила сварочного тока определяет скорость нагрева металла в зоне формирования соединения.

В ряде случаев сварки, в особенности при малом расстоянии (шаге) между сварными точками, сила сварочного тока IСВ, т. е. тока который протекает через зону формирования соединения и определяет тепловыделение в ней, и сила тока, который протекает во вторичном контуре сварочной машины I2, могут различаться между собой. Причиной этого может являться ток шунтирования IШ, который протекает вне зоны сварки, в частности, через ранее сваренные точки (рис. 1.10) или контакты деталь-деталь, расположенные вне зоны формирования соединения, например, при точечной сварке с обжатием периферийной зоны соединения. Таким образом, значение вторичного тока сварочной машины I2 зависит от сварочного тока IСВ и тока шунтирования IШ:

(1.9)

Ток шунтирования. Зона проводимости тока шунтирования представляет собой электрическую цепь с сопротивлением rШ, параллельную электрической цепи зоны сварки с сопротивлением rЭЭ. Вследствие этого силу тока шунтирования можно вычислить по формуле [3]:

, (1.10)

где — электрическое сопротивление шунтирующей ветви; ρ — удельное электрическое сопротивление металла свариваемых деталей;
kЭ — коэффициент ();
s — толщина детали; bПР — ширина шунта, приведенная с учётом растекания тока и равная ; dП и dШ — диаметры уплотняющего пояска и шунтирующего контакта соответственно.

Сварочный ток. От силы сварочного тока размеры ядра расплавленного металла зависят в наибольшей степени (рис. 1.9, б). С увеличением IСВ проплавление деталей А и диаметр ядра dЯ растут почти прямо пропорционально изменению IСВ.

Силу сварочного тока IСВ, по той же причине, что и tСВ, пока определяют только ориентировочно по технологическим рекомендациям или по эмпирическим зависимостям [2…4, 7…11, 13, 15…17]. В отличие от tСВ, для определения которого расчетные методики вообще отсутствуют, для определения IСВ в теории КТС предложено много самых разнообразных зависимостей, к сожалению, не отличающихся высокой точностью и универсальностью, например, зависимостей следующего вида [73...76]:

; ;

; ,

где s — толщина деталей; dЭ — диаметр рабочей поверхности электрода;
ki – опытный коэффициент; θ — температура плавления (с учетом скрытой теплоты плавления); ρ и λ — удельное электрическое сопротивление и коэффициент теплопроводности; dТ — диаметр ядра (см); ρТ — удельное электрическое сопротивление металла в момент его плавления (мкОм/см).

В практике традиционных способов КТС для сварочного импульса, длительностью tСВ, усредненную силу сварочного тока IСВ чаще всего приближенно рассчитывают по следующей зависимости, которая получена из общеизвестного закона Джоуля – Ленца [8…11, 16]:

, [3] (1.11)

где QЭЭ — количество теплоты, выделяющееся в зоне сварки, которое требуется для образования сварного соединения заданных размеров (величина QЭЭ определяется по уравнению теплового баланса (см. ниже п. 2.4.3));
mr — коэффициент, который учитывает изменение сопротивления зоны сварки rЭЭ в процессе формирования соединения (для низкоуглеродистых сталей он равен , для алюминиевых и магниевых сплавов — , для коррозионно-стойких сталей — , для сплавов титана — ; rДК — электрическое сопротивление деталей в конце сварки (определение rДК см. ниже п. 2.3.3).






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных