Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Структура, свойства и применение чугунов




 

Чугуны – сплавы железа с углеродом и с другими элементами с содержанием углерода более 2%.

2 4,3
Процессы кристаллизации и структурообразования в чугунах отражает подсистема диаграммы железо-углерод, которая изображена на рис. 1.

 

Рис. 1. Часть диаграммы железо-углерод, отображающая структуры чугунов.

Сплошные линии – метастабильная диаграмма, пунктирные – стабильная

 

Белые чугуны

Белые чугуны образуются при быстром охлаждении и их структура описывается метастабильной диаграммой.

Структура белых чугунов зависит от содержания углерода и они классифицируются по структуре и содержанию углерода следующим образом: чугуны с содержанием углерода до 4,3% (левее точки С) называются доэвтектическими, с содержанием углерода 4,3% (точка С) – эвтектическими, с содержанием углерода более 4,3% (правее точки С) – заэвтектическими.

 

Эвтектический белый чугун. Сплав 2.

В точке С при постоянной температуре 1130°С происходит кристаллизация жидкости по реакции Жс®АЕ F. Образующаяся смесь аустенита и цементита называется ледебуритом и представляет собою пластины цементита со столбиками аустенита в них. После окончания кристаллизации сплав будет охлаждаться далее. Содержание углерода в столбиках аустенита при охлаждении будет уменьшаться по линии SЕ. На линии PSK аустенит будет содержать 0,8% (т.S) и распадается на перлит.

Ниже линии РSК ледебурит будет состоять из пластин цементита и столбиков перлита в них. Пример структуры ледебурита изображен на рис. 2.

 

Рис. 2. Микроструктура ледебурита (а) и ее схематическое изображение (б)

 

Доэвтектический белый чугун. Сплав 1.

Чуть ниже линии АС (рис. 2) в жидкости возникают и растут зародыши аустенита. При произвольной температуре t состав аустенита определяется проекцией точки m, а жидкости – точки n на ось концентраций, то есть состав аустенита в процессе кристаллизации изменяется по линии солидус АЕ, а состав жидкости – по линии ликвидус АС. Количество аустенита и жидкости при температуре t определяется, как % и %. На линии ЕСF происходит кристаллизация ледебурита также как в сплаве 2. После окончания кристаллизации ледебурита сплав 1 состоит из зерен аустенита состава точки Е и ледебурита. При дальнейшем охлаждении сплава содержание углерода в зернах аустенита уменьшается по линии SЕ и углерод, выходящий на поверхность его зерен образует слой вторичного цементита. На линии РSК в аустените останется 0,8% С и аустенит распадется на перлит. Превращения в ледебурите при охлаждении сплава 1 полностью совпадают с превращениями в сплаве 2. После окончания перлитного превращения сплав 2 охлаждается до комнатной температуры и структура доэвтектического сплава 1 состоит из перлита+цементита вторичного+ледебурита и имеет вид, изображенный на рис. 3.

Ж
А

Рис. 3. Микроструктура белого доэвтектического чугуна и ее схематическое изображение

 

Заэвтектический белый чугун. Сплав 3.

Ниже линии СД (рис. 1) в сплаве будет происходить кристаллизация цементита первичного в виде пластин. При произвольной температуре t состав жидкости определяется проекцией точки k на ось концентрации, то есть состав жидкости изменяется по линии ликвидус СД. Количество жидкости и цементита первичного при температуре % и %. На линии ЕСF происходит кристаллизация ледебурита как и в эвтектическом сплаве 2. Все дальнейшие превращения в ледебурите будут аналогичны превращениям в эвтектическом сплаве 2 и конечная структура заэвтектического сплава 3 состоит из цементита первичного и ледебурита и изображена на рис. 4.

 

Рис. 4. Микроструктура белого заэвтектического чугуна и ее схематическое изображение

Применение белых чугунов

В своей структуре белые чугуны содержат большое количество цементита, обладающего высокой твердостью, прочностью, хрупкостью и имеющего белый цвет, чем и обусловлен цвет и название белых чугунов. Так, например, в сплаве 3 при комнатной температуре количество цементита в структуре равно %. Из-за большого количества цементита в своей структуре белые чугуны обладают высокой твердостью, износостойкостью, хрупкостью и поддаются обработке резанием только сверхтвердыми сплавами. Белые чугуны применяют в основном в виде слоя отбеленного чугуна на поверхности изделия, внутри которых кристаллизуется серый чугун вследствие замедления охлаждения, например, прокатные валки. Такие изделия имеют твердую износостойкую поверхность и более пластичную, вязкую сердцевину.

Белый доэвтектический чугун также используется в виде заготовок среднего литья, отжигаемых впоследствии на ковкий чугун.

Серые чугуны

В серых чугунах часть углерода находится в свободном состоянии в виде стабильной фазы-графита и поэтому в серых чугунах кристаллизация и структурообразование происходят при медленном охлаждении по стабильной диаграмме железо-углерод. (рис. 5).

Рис. 5. Часть стабильной диаграммы сплавов Fе–С, отражающая процессы

кристаллизации и структурообразования в серых чугунах

Ниже линии АС¢ в жидкости происходит кристаллизация аустенита, причем содержание углерода в жидкости изменяется по линии АС¢, а в аустените – по линии АЕ¢. И когда сплав 1 охладится до линии Е¢С¢F¢ оставшаяся жидкость будет иметь состав С¢.

В сплаве 3 при медленном охлаждении ниже линии С¢Д¢ в жидкости будет происходить кристаллизация графита в виде столбиков. Из-за различной плотности графита и жидкости столбики графита будут всплывать в верхнюю часть отливки и поэтому в структуре не наблюдается. Содержание углерода в жидкости будет изменятся по линии С¢Д¢ и когда сплав 3 охладится до линии Е¢С¢F¢ жидкость будет иметь состав точки С¢.

Таким образом, независимо от содержания углерода, жидкость на линии Е¢С¢F¢ будет иметь состав точки С¢.

При медленном охлаждении, немного ниже линии Е¢С¢F¢ при постоянной температуре в жидкости происходит совместная кристаллизация аустенита и графита по реакции .

Графитовые включения кристаллизуются в виде розеток с тремя, четырьмя искривленными лепестками.

После окончания процесса кристаллизации АЕ¢ и Г сплав будет охлаждаться далее, растворимость углерода в аустените уменьшается по линии Е¢S¢, лишний углерод уходит из аустенита на ранее образовавшиеся графитные включения, наслаиваясь на них и увеличивая их размеры. При охлаждении сплава до линии Р¢S¢К¢ содержание углерода уменьшится до 0,7% (т. S¢).

 

 

Рис. 6. Микроструктура серого чугуна с крупнопластинчатым графитом

и ее условная зарисовка: а – на ферритной основе; б – на феррито-перлитной

основе; в – на перлитной основе

 

При очень малой скорости охлаждения или даже выдержки в интервале температур 738…723°С произойдет полное превращение аустенита в феррит и получится ферритная металлическая основа с графитными включениями, то есть структура феррит+графит (рис. 6а) – серый чугун на ферритной основе, имеющий низкие механические свойства – малую выносливость и хрупкость.

При большей, промежуточной, скорости охлаждения часть аустенита, находящегося около графитных включений при охлаждении в интервале температур между линиями Р¢S¢К¢ и РSК, превратится в феррит, а оставшаяся часть аустенита, находящаяся дальше от графитовых включений, переохладится ниже линии РSК и распадется на перлит. Получится серый чугун на феррито-перлитной основе с графитовыми включениями (рис. 6б), имеющий небольшие, но более высокие, чем предыдущий сплав, механические свойства.

При большой скорости охлаждения превращение аустенита в феррит в интервале температур между линиями Р¢S¢К¢ и РSК произойти не успеет, аустенит переохладится ниже линии РSК, распадется на перлит и получится перлитная металлическая основа с графитными включениями, то есть структура перлит+графит (рис. 6в). Это наилучший вид литейного серого чугуна, который может быть использован также как антифрикционный сплав для подшипников скольжения. Таким образом, при кристаллизации и структурообразовании серых чугунов независимо от содержания углерода в сером чугуне получаются структуры, изображенные на рис. 6, из анализа которых можно сделать вывод о том, что металлическая основа серых чугунов похожа на структуру технического железа, доэвтектоидной и эвтектоидной стали и, следовательно, серые чугуны можно рассматривать, как стали с графитными включениями.

Серые чугуны классифицируются по типу металлической основы: на ферритные, феррито-перлитные, перлитные и по форме графитовых включений: серые чугуны с крупнопластинчатым графитом, серые чугуны с мелкопластинчатым графитом, высокопрочные чугуны с шаровидным графитом и ковкие чугуны с хлопьевидным графитом.

 

Влияние примесей на кристаллизацию и структурообразование чугунов

Кремний обязательно присутствует в чугунах и оказывает большое влияние на структуру и свойства чугунов. Кремний приводит к уменьшению растворимости углерода в аустените и смещению точек Е¢ и С¢ на диаграмме влево тем сильнее, чем больше его содержание. Смещение эвтектической точки С¢ влево при наличии кремния приводит к тому, что доэвтектический чугун становится заэвтектическим и при охлаждении жидкости в нем начнется кристаллизация не аустенита, а графита. Если проводить модифицирование серого чугуна мелко раздробленным ферросицилием, его частицы, растворяясь локально обогащают расплав кремнием. Это приводит к появлению большого числа более мелких графитных включений в структуре чугуна, то есть получается его структура с мелкопластинчатым графитом. Такой чугун обладает прочностью в 1,5…2 раза выше прочности чугуна с крупнопластинчатым графитом. Обычно содержание кремния в чугунах колеблется в пределах 1,2…3,5%. Серые чугуны с крупнопластинчатым графитом и с мелкопластинчатым графитом называют собственно серыми и маркируют буквами СЧ, затем следует число, которое показывает среднее значение временного сопротивления sв при растяжении (кгс/мм2).

Например СЧ18 – серый чугун sв=18 кгс/мм2.

 

Высокопрочный чугун

Для повышения прочности чугуна в него вводят небольшие добавки щелочных или щелочноземельных металлов, чаще всего магния, при концентрации 0,03…0,07%. Пары магния, обрабатывая расплав, способствуют кристаллизации графита в виде шариков, и получается чугун с шаровидным графитом. Шаровидные графитные включения имеют минимальную поверхность раздела с металлической матрицей и не являются такими сильными концентраторами напряжений, как графитные включения в виде крупных и мелких пластин. Это обстоятельство, а так же то, что магний, растворяясь в зернах и на их границах, изменяет металл как легирующий элемент, приводит к повышению прочности чугуна, благодаря чему он и получил свое название высокопрочный чугун (рис.7).

Высокопрочные чугуны маркируют буквами ВЧ, затем следуют числа. Первые числа показывают среднее значение временного сопротивления sв при растяжении (кгс/мм2), второе – относительное удлинение d (%), например, ВЧ 100-4 – высокопрочный чугун, sв=100 кгс/мм2, d=4%.

 

 

Рис. 7. Микроструктура высокопрочного чугуна с шаровидным графитом

и ее условная зарисовка: а – на ферритной основе;

б – на феррито-перлитной основе; в – на перлитной основе

 

Ковкий чугун

Ковкий чугун получают из белого доэвтектического чугуна с содержанием углерода 2,5…3% и кремния 0,8…1,6% путем длительного (около 100 часов) графитизирующего отжига при температуре около 900-1000°С.

Цементит является метастабильной фазой и при высокой температуре, в процессе выдержки, распадается на стабильные фазы аустенит и графит, который выделяется в виде комков и под микроскопом имеет хлопьевидную форму, т. е. получается ковкий чугун с хлопьевидным графитом (рис. 8).

 

Рис. 8. Микроструктура ковкого чугуна с хлопьевидным графитом

и ее условная зарисовка: а – на ферритной основе;

б – на феррито-перлитной основе; в – на перлитной основе

 

По прочности ковкие чугуны занимают промежуточное положение между чугунами с мелкопластинчатым графитом и высокопрочными чугунами.

Структура ковкого чугуна и его схематическое изображение приведена на рис.8.

Ковкий чугун маркируют буквами КЧ, затем следуют числа. Первое число показывает среднее значение временного сопротивление sв при растяжении (кгс/мм2), второе – относительное удлинение d (%), например, КЧ 50-4 – ковкий чугун, sв=50 кгс/мм2, d=4%.

Применение серых чугунов

Наличие графитных включений ослабляет металлическую ос­нову серых чугунов и снижает их прочность, как из-за уменьшения работающего сечения металлической основы, так и из-за того, что края графитных включений являются концентраторами напряжений, способствуя разрушению чугуна. Сопротивление при растяжении, изгибе и кручении в основном определяется формой, размером и ко­личеством графитных включений.

При сжатии серых чугунов форма, количество и размеры гра­фитных включений практически не оказывает влияния на предел прочности, который оказывается близким к пределу прочности стали и зависит главным образом от типа металлической основы. Проч­ность серых чугунов при сжатии в 3-5 раз больше, чем при растяже­нии. Поэтому серые чугуны рекомендуется использовать для изде­лий, работающих в основном на сжатие.

Графитные включения, нарушающие сплошность металличе­ской основы, делают чугуны малочувствительными к различным внешним концентраторам напряжений (дефекты поверхности, над­резы, выточки и т. д.), то есть делают детали из серых чугунов неподверженными усталостным разрушениям.

Графитные включения улучшают обрабатываемость чугунов резанием.

При работе чугуна в парах трения чугун, изнашиваясь, создает полости, заполняемые смазочным маслом, что повышает ан­тифрикционные свойства чугуна.

Графитные включения в серых чугунах увеличивают демпфирующую способность изделий из них, то есть их внутреннее трение, или, иначе говоря, способность чугунов рассеивать подводимую к нему энергию механических колебаний, что снижает шумы при работе машины с такими деталями.

Высокопрочный чугун широко используют в автостроении и дизелестроении для коленчатых валов, крышек цилиндров и других деталей, в тяжелом машиностроении – для деталей прокатных ста­нов, в кузнечно-прессовом оборудовании, в химической и нефтяной промышленности. Ковкий чугун применяется для изготовления деталей, работающих при ударных и вибрационных нагрузках.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных