ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ТРИ ПРОБЛЕМЫ КОЭФФИЦИЕНТА ШАРПАХотя коэффициент Шарпа — полезный способ измерений, у него есть некоторое количество потенциальных недостатков** 1. Измерение прибыли в коэффициенте Шарпа. Это измерение — среднемесячная доходность (или доходность за другой интервал времени), выраженная в процентах годовых, — более приспособлено для оценки вероятной результативности в следующем месяце, чем для оценки результативности на протяжении всего года. Например, предположим, что управляющий в течение полугода получает 40% прибыли каждый месяц, а другие 6 месяцев приносят ему убытки в размере 30%. Вычисляя годовую прибыль, исходя из среднемесячной, мы получим 60% (12 х 5%). Однако если размер позиции корректируется в соответствии с существующими активами, а так поступает большинство управляющих, действительная прибыль за год составила бы -11%. Это произойдет, потому что из каждого доллара активов, имеющихся в начале периода, к концу периода осталось бы только $0,8858((1,40)6 х (0,70)6 = 0,8858). Как показывает этот пример, если вы озабочены оценкой потенциальной доходности за расширенный период, а не лишь за следующий месяц или другой интервал, то измерение прибыли, используемое в коэффициенте Шарпа, может вести к огромным искажениям. Однако эту проблему можно обойти, используя среднее геометрическое (в проти- Здесь подразумевается, что торговые активы постоянны (прибыль изымается, а убытки восполняются). Другими словами, отсутствует реинвестирование прибыли и снижение величины инвестиций в случае убытков. Вообще говоря, хотя вычисление прибыли с учетом реинвестиций предпочтительно, это обстоятельство более чем компенсируется существенным преимуществом, состоящем в отсутствии необходимости оценивать требования к минимальной величине активов в случае торговой системы. Более того, система с более высокой прибылью, рассчитанной без учета реинвестиций, чаше всего будет демонстрировать и более высокую прибыль с их учетом. Этот раздел адаптирован из статьи Дж. Швагера «Alternative to Sharpe Ratio Better Measure of Performance», Futures, p. 57-58, March 1985. ГЛАВА 21. измерение результативности торговли 739 воположность арифметическому) при расчете средней месячной доходности, которую затем выражают в процентах годовых, чтобы получить числитель коэффициента Шарпа. Средняя геометрическая доходность в процентах годовых в точности эквивалентна средней годовой доходности с учетом реинвестиций, которая обсуждается позже в этой главе в разделе, посвященном отношению прибыли к максимальному падению стоимости активов. 2. Коэффициент Шарпа не делает различий между коле С точки зрения меры риска, используемой в коэффициенте Шарпа, т.е. стандартного отклонения доходности, колебания вверх и вниз рассматриваются как в равной степени плохие. Таким образом, коэффициент Шарпа показывал бы в невыгодном свете управляющего, у которого спорадически наблюдались бы резкие увеличения активов, даже если бы падения стоимости активов были малы. Рис. 21.3 сравнивает гипотетическое движение активов менеджера С, где время от времени наблюдается рост активов и отсутствует их падения, и менеджера D, который столкнулся с несколькими падениями стоимости активов. Хотя оба управляющих зафиксировали равную прибыль за период в целом, и менеджер D столкнулся с несколькими отрицательными переоценками, в то время как у менеджера С их не было, коэффициент Шарпа оценил бы менеджера D выше (см. таблицу). Такой исход — прямое следствие того факта, что коэффициент Шарпа оценивает верхнюю волатильность точно так же, как и нижнюю. 3. Коэффициент Шарпа не делает различий между череду На рис. 21.4 показано гипотетическое изменение стоимости активов с начальной величиной $100 000, управляемых менеджером Е и менеджером F. Каждый из них в обшей сложности зарабатывает $48 000, или $24 000 в год. Однако у менеджера Е месячные доходы в $8000 чередуются с месячными потерями в размере $4000, в то время как менеджер F сразу теряет $48 000 в первые 12 месяцев и последовательно зарабатывает $96 000 в течение оставшегося периода. Коэффициент Шарпа этих двух управляющих был бы одним и тем же. Несмотря на этот факт, мало нашлось бы трейдеров, рассматривающих деятельность этих менеджеров как эквивалентную с точки зрения риска. Фактически все трейдеры согласились бы с тем, что результаты менеджера F подразумевают значительно более высокий уровень риска. Рисунок 21.3. Не нашли, что искали? Воспользуйтесь поиском:
|