Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Полупроводниковые фотоэлектрические приборы. Фотоэлектрическими приборами называют преобразователи энергии оптического излучения в электрическую энергию.




Фотоэлектрическими приборами называют преобразователи энергии оптического излучения в электрическую энергию.

К оптическим относят ультрафиолетовое, видимое и инфракрасное излучения с длиной волны от десятков нанометров до десятых долей миллиметра. Как известно, видимое излучение лежит в диапазоне длин волн 0,38 — 0,76 мкм.

Работа полупроводниковых фотоэлектрических приборов основана на так называемом внутреннем фотоэффекте — ионизации квантами света атомов кристаллической решетки, в результате чего изме­няется концентрация свободных носителей заряда, а, следовательно, и электрические свойства вещества. В металлах внутренний фотоэффект не наблюдается.

Фоторезисторы. Фоторезистором называют полупроводниковый прибор с двумя выводами, электрической проводимостью которого можно управлять с помощью оптического излучения.

Рисунок 8.2. Устройство (а), схема включения (б) фоторезистора и его ВАХ (в) пр различных освещенностях

 

Устройство фоторезистора показано на рис.8.2. а. Пластина или пленка полупроводникового материала I закреплена на подложке 2 из депроводящего материала — стекла, керамики или кварца. Световой поток падает на фотоактивный материал через защищенное слоем прозрачного лака специальное отверстие — окно.

Если к неосвещенному фоторезистору подключить источник питания Е (см.рис. 8.2. б). то в электрической цепи появится небольшой ток, называемый темповым током, обусловленный наличием в неосвещенном полупроводнике некоторого количества свободных носителей заряда.

При освещении фоторезистора ток в цепи существенно возрастает за счет увеличения концентрации свободных носителей заряда. Типичные ВАХ фоторезистора для различных световых потоков Ф изображены на рис. 8.2, в.

Фототок (разность токов при наличии и отсутствии освещения) зависит также от спектрального состава светового потока. Спектральные свойства фоторезисторов принято характеризовать длиной волны λмакс соответствующей максимуму чувствительности, и порогом фотоэффекта, равным длине волны λ0. при которой чувствительность составляет 1% максимальной.

Фоторезисторы обладают значительной инерционностью, обусловленной временем генерации и рекомбинации электронов и дырок, происходящих при изменении освещенности фоторезистора. Максимальная частота модуляции светового потока, при которой могут работать фоторезисторы, достигает значения порядка 105 Гц.

Тем новое сопротивление неосвещенных фоторезисторов различных типов имеет широкий диапазон: от 102 до 109 Ом. Значение рабочего напряжения фоторезистора, которое зависит от его размеров, т.е. от расстояния между электродами, выбирают в пределах от нескольких единиц вольт до 100 В

Достоинства фоторезисторов: высокая чувствительность, возможность использования в инфракрасной области спектра излучения, небольшие габариты и применимость для работы как в цепях постоянного, так и переменного токов.

Фотодиоды. Фотодиодом называют полупроводниковый фотоэлектрический прибор с двумя выводами, имеющий один р-n -переход.

Структура фотодиода не отличается от структуры обычного диода. На границе р- и n -областей образуется лишенный подвижных носителей заряда запирающий слой, электрическое поле которого, обусловленное контактной разностью потенциалов, препятствует движению основных носителей заряда. При освещении фотодиода (световой поток направляется перпендикулярно плоскости р-n -перехода) в результате ионизации фотонами в р- и n -областях образуются электронно-дыроччые пары, которые диффундируют к р-n -переходу (разность концентраций). Под действием электрического поля р-n -перехо­да пары разделяются и носители заряда перебрасываются в области, где они становятся основными (рис.8.3), т.е. неосновные носители заряда n -области — дырки — переходят в р -область, а электроны р -области переходят в n -область. Это приводит к созданию на выводах фотодиода при разомкнутой внешней цепи разности потенциалов, на­зываемой фото-ЭДС, предельно возможное значение, которой равно контактной разности потенциалов, составляющей десятые доли вольта. Так, например, у селеновых и кремниевых фотодиодов фото-ЭДС достигает 0,5 — 0,6 В, у фотодиодов из арсенида галлия — 0,87 В.

Если замкнуть зажимы освещенного фотодиода через резистор, то в электрической цепи появится ток, значение которого зависит от фото-ЭДС и сопротивления резистора.

Фотодиоды могут работать в одном из двух режимов — без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Схема включения и ВАХ фотодиода в фотогенераторном режиме Для различных освещенностей показаны на рис.8.4. В этом режиме световая энергия непосредственно преобразуется в электрическую. Из Рис.8.4 видно, что при RH = 0 ток короткого замыкания Iк фотодиода будет максимальным, а при размыкании нагрузочного резистра максимальным будет напряжение холостого хода Ux фотодиода.

Рисунок 8.3. Устройство фотодиода

Рис.8.4. Схема включения (а) и ВАХ (5) фотодиода в фото генератор ном режиме

 

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на, космических кораблях. КПД кремниевых солнечных элементов составляет около 20%, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2 соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис.8.5,а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 8.5, б). Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода.

Рисунок 8.5. Схема включения (а) и ВАХ (б) фотодиода в фотопреобразовательном режиме

 

Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых — 1 — 3 мкА.

Спектральные характеристики фотодиодов зависят от материалов, используемых для их изготовления. Селеновые фотодиоды имеют спектральную характеристику, близкую по форме к спектральной зависимости чувствительности человеческого глаза, поэтому их широко применяют в фото- и кинотехнике. Германиевые и кремниевые фотодиоды чувствительны как в видимой, так и в инфракрасной части спектра излучения.

По сравнению с фоторезисторами фотодиоды являются более быстродействующими, но имеют меньшую чувствительность.

Частотные характеристики зависят от материалов фотодиода. В настоящее время созданы высокочастотные (быстродействующие) фотодиоды на основе германия и арсенида галлия, которые могут работать при частотах модуляции светового потока в несколько сотен мегагерц.

Существенным недостатком фотодиодов является зависимость значений их параметров от температуры, при этом следует иметь в виду, что кремниевые фотодиоды более стабильны.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а, следовательно, и чувствительность значительно возрастут. Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых — в 200 – 300 раз, у кремниевых – в 104 — 106 раз). Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может дости­гать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Лавинные фотодиоды можно применять для обнаружения световых сигналов и счета световых импульсов в релейных устройствах автоматики.

Транзисторы

Транзисторы (Т) – полупроводниковые приборы, служащие для усиления мощности электрических сигналов. По принципу действия транзисторы делятся на биполярные и полевые (униполярные").

Рисунок 8.6. – Структура биполярного транзистора типов (а), (б) и их условное обозначение

Биполярный транзистор (БТ) — представляет собой трехслойную структуру (рис.8.6) В зависимости от способа чередования слоев БТ называются транзисторами типа или типа (рис.8.6,а,б).

Транзистор называется биполярным, если физические процессы в нем связаны с движением носителей обоих знаков (свободных электронов и дырок).

В биполярном транзисторе средний слой называется базой (Б), один крайний слой - коллектором (К), а другой крайний слой - эмиттером (Э). Каждый слой имеет свой вывод, с помощью которых биполярный транзи­стор подключается в цепь.

Структура и условное обозначение одного из видов полевых транзи­сторов показана на рисунке 8.7. У полевых транзисторов так же, как и у биполярных — три электрода, называемые истоком, стоком и затвором.

Истоком (И) называется электрод, из которого в центральную область ПТ (канал) входят основные носители заряда п или р -типов.

Сток (С) – электрод, через который основные носители уходят из канала.

Затвор (3) – электрод, управляющий потоком носителей заряда.

Поскольку в полевом транзисторе ток определяется движением носителей только одного знака р или п -типов, эти транзисторы называют также у ниполярными.

Рисунок 8.7. Структура (а) и условное обозначение полевого транзистора с каналом р -типа






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных