ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Детектор и детектирование (демодуляция).Процесс выделения звука (или другой полезной информации) из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. А осуществляется демодуляция детектором.
Детекторный радиоприемник состоит из колебательного контура, антенны, детектора (диода), конденсатора постоянной емкости, телефона. В контуре принятая радиоволна возбуждает модулированные колебания. Конденсатор переменной емкости настраивает контур в резонанс с принятой радиоволной. Модулированные колебания ВЧ поступают на детекторный каскад. После прохождения детектора составляющая тока ВЧ идет через конденсатор постоянной емкости, а составляющая тока НЧ идет на обмотки катушек телефона. Так как ,то для тока высокой частоты , а для тока низкой частоты . Таким образом, по катушкам телефона идет ток низкой частоты, вызывающий колебания мембраны с той же звуковой частотой.
В первом приемнике роль детектора выполнял диод. Он является двухэлектродным полупроводниковым прибором, обладающим односторонней электропроводностью: хорошо проводит ток одного направления и плохо - ток обратного направления. Для простоты же объяснения работы диода как детектора будем считать, что ток обратного направления он вообще не проводит и является для него как бы изолятором. Это свойство диода иллюстрирует график, изображенный на рис. 10: диод беспрепятственно пропускает через себя положительные полуволны переменного тока и совсем не пропускает отрицательные полуволны. Отрицательные полуволны диод как бы срезает. В результате такого действия диода переменный ток преобразуется в ток пульсирующий ток одного направления, но изменяющийся по величине с частотой пропускаемого через него тока. Этот преобразовательный процесс, называемый выпрямлением переменного тока, лежит в основе детектирования принятых радиосигналов.
Рис. 10. Преобразование переменного тока в пульсирующий.
Рис. 11. Графики, иллюстрирующие детектирование модулированных колебаний радиочастоты
Рассмотрим графики, показанные на рис. 11. Они иллюстрируют процессы, происходящие в детекторной цепи простейшего приемника. Под действием радиоволн в контуре приемника возбуждаются модулированные колебания радиочастоты (рис. 11,а). К контуру подключена цепь, состоящая из диода и телефонов. Для этой цепи колебательный контур является источником переменного тока радиочастоты. Поскольку диод пропускает ток только одного направления, то модулированные колебания радиочастоты, поступающие в его цепь, будут им выпрямлены (рис. 11,6), или, говоря иначе, продетектированы. Если провести штриховую линию, огибающую вершины выпрямленного тока, то получится «рисунок» тока звуковой частоты, которым модулирован ток, поступающий в антенну радиостанции во время передачи. Ток, получившийся в результате детектирования, состоит из импульсов радиочастоты, амплитуды которых изменяются со звуковой частотой. Его можно рассматривать как суммарный ток и разложить на две составляющие: высокочастотную и низкочастотную. Их называют соответственно высокочастотной и составляющей звуковой частоты пульсирующего тока. В простейшем приемнике составляющая звуковой частоты идет через телефоны и преобразуется ими в звук. Телефон —третье, последнее звено простейшего приемника, Телефон, образно выражаясь, «выдает готовую продукцию» — звук. Это один из старейших электротехнических приборов, почти без изменения сохранивший свои основные черты до наших дней.
Рис. 12. Устройство электромагнитного телефона.
Для детекторных и многих простейших транзисторных приемников используют головные телефоны, например типов ТОН-1, ТГ-1, ТА-4. Это два последовательно соединенных телефона, удерживающихся на оголовье. Отвернем крышку одного из телефонов (рис. 13,а). Под нею находится круглая жестяная пластинка — мембрана. Сняв осторожно мембрану, мы увидим две катушки, насаженные на полюсные наконечники постоянного магнита, впрессованного в корпус. Катушки соединены последовательно, а крайние выводы их припаяны к стерженькам, к которым с наружной стороны при помощи зажимных винтов подключен шнур с однополюсными штепсельными вилками. Как работает телефон? Мембрана, издающая звук, находится возле полюсных наконечников магнита и опирается на бортики корпуса (рис. 12, а). Под действием поля магнита она немного прогибается в середине, но неприкасается к полюсным наконечникам магнита (на рис. 12, б) - сплошная линия. Когда через, катушки телефона течет ток, он создает вокруг катушек магнитное поле, которое взаимодействует с магнитным полем постоянного магнита. Сила этого магнитного поля, а значит и сила притяжения мембраны к полюсным наконечникам зависит от направления тока в катушках. При одном направлении, когда направления магнитных силовых линий катушек и магнита совпадают и их поля складываются, мембрана сильнее притягивается к полюсам магнита (на рис. 12, б - нижняя штриховая линия). При другом направлении тока силовые линии катушки и магнита направлены встречно и общее поле становится слабее, чем поле магнита. В этом случае мембрана слабее притягивается полюсными наконечниками и выпрямляясь, несколько удаляется от них (рис. 12, б - верхняя штриховая линия). Если через катушки телефона пропускать переменный ток звуковой частоты, суммарное магнитное поле станет то усиливаться, то ослабляться, а мембрана будет то приближаться к полюсным наконечникам магнита, то отходить от них, т. е. колебаться с частотой тока. Колеблясь, мембрана создаст в окружающем пространстве звуковые волны. С первого взгляда может показаться, что постоянный магнит в телефоне не нужен: катушки можно надеть на железную ненамагниченную подковку. Но это не так. И вот почему. Железная подковка, намагничиваемая переменным током, будет притягивать мембрану независимо от того, идет ли ток через катушки в одном направлении или другом. Значит, за один период переменного тока мембрана притянется во время первого полупериода, отойдет от него и еще раз притянется во время второго полупериода, т.е. на один период переменного тока (рис, 14, а) она сделает два колебания (рис. 14, б).
Рис. 12. Графики иллюстрирующие работу телефона: а - переменный ток в телефоне, б - без постоянного магнита, в - с постоянным магнитом.
Если, например, частота тока 500 Гц, то мембрана телефона за 1 с сделает 500 х 2 = 1000 колебаний и тон звука исказится - будет вдвое выше. Вряд ли нас устроит такой телефон. С постоянным же магнитом дело обстоит иначе: при одном полупериоде происходит усиление магнитного поля - уже притянутая мембрана прогнется еще больше; при другом полупериоде поле ослабевает и мембрана, выпрямляясь, отходит дальше от полюсов магнита. Таким образом, при наличии постоянного магнита мембрана за один период переменного тока делает только одно колебание (рис. 12, в) и телефон не искажает звук. Постоянный магнит, кроме того, повышает громкость звучания телефона. Теперь разберем такой вопрос: зачем параллельно головным телефонам подключают блокировочный конденсатор? Какова его роль? Электрическая емкость блокировочного конденсатора такова, что через него свободно проходят токи высокой частоты, а токам звуковой частоты он оказывает значительное сопротивление. Телефоны, наоборот, хорошо пропускают токи звуковой частоты и оказывают большое сопротивление токам высокой частоты. На этом участке детекторной цепи высокочастотный пульсирующий ток разделяется (на рис. 13 - в точке а) на составляющие, которые далее идут: высокочастотная - через блокировочный конденсатор С бл, а составляющая звуковой частоты через телефоны. Затем составляющие соединяются (на рис. 13 - в точке б) и далее опять идут вместе.
Рис. 13. В точке а детекторной цепи, составляющие пульсирующего тока разделяются, а в точке б, соединяются.
Назначение блокировочного конденсатора можно объяснить еще так. Телефон из - за инертности мембраны не может отзываться на каждый высокочастотный импульс тока в детекторной цепи. Значит, чтобы телефон работал, надо как - то «сгладить» высокочастотные импульсы, «заполнить» провалы тока между ними. Эта задача и решается с помощью блокировочного конденсатора следующим образом. Отдельные высокочастотные импульсы заряжают конденсатор. В моменты между импульсами конденсатор разряжается через телефон, заполняя таким образом «провалы» между импульсами. В результате через телефон идет ток одного направления, но изменяющийся по величине со звуковой частотой, который и преобразуется им в звук. Еще короче о роли блокировочного конденсатора можно сказать так: он фильтрует сигнал звуковой частоты, выделенный диодом, т. е. «очищает» его от составляющей радиочастоты. Качество работы телефона оценивают главным образом с точки зрения его чувствительности - способности реагировать на слабые колебания электрического тока. Чем слабее колебания, на которые отзывается телефон, тем выше его чувствительность. Чувствительность телефона зависит от числа витков в его катушках и качества магнита. Два телефона с совершенно одинаковыми магнитами, но с катушками, содержащими неодинаковое число витков, различны по чувствительности. Лучшей чувствительностью будет обладать тот из них, в котором использованы катушки с большим числом витков. Чувствительность телефона зависит также от положения мембраны относительно полюсных наконечников магнита. Наилучшая чувствительность его будет в том случае, когда мембрана находится очень близко к полюсным наконечникам, но, вибрируя, не прикасается к ним. Телефоны принято подразделять на высокоомные - с большим числом витков в катушках, и низкоомные - с относительно небольшим числом витков. Для детекторного приемника пригодны только высокоомные телефоны. Катушки каждого телефона типа ТОН-1, например, намотаны эмалированным проводом толщиной 0,06 мм и имеют по 4000 витков. Их сопротивление постоянному току около 2200 Ом. Это число, характеризующее телефоны, выштамповано на их корпусах. Поскольку два телефона соединены последовательно, их общее сопротивление постоянному току составляет 4400 Ом. Сопротивление постоянному току низкоомных телефонов, например типа ТА - 56, может быть 50 - 60 Ом. Низкоомные телефоны можно использовать для некоторых транзисторных приемников. Как проверить исправность и чувствительность головных телефонов? Прижмите их к ушам. Смочите слюной штепсельные вилки на конце шнура, а затем коснитесь ими друг друга - в телефонах должен быть слышен слабый щелчок. Чем сильнее этот щелчок, тем чувствительнее телефоны. Щелчки получаются потому, что смоченный контакт между металлическими вилками представляет собой очень слабый источник тока. Грубо проверить телефоны можно с помощью батареи для карманного электрического фонарика. При подключении телефонов к батарее и отключении от нее должны быть слышны резкие щелчки. Если щелчков нет, значит, где - то в катушках или шнуре имеется обрыв или плохой контакт.
В общем случае процесс приема сигнала выглядит следующим образом: - Электромагнитные волны наводят в антенне токи высокой частоты; - Эти токи поступают на входной контур; - Контур выделяет из множества частот только узкую полосу, на которую он настроен; - Из высокочастотного сигнала необходимо выделить скрытый в нем сигнал звуковой частоты (звуковую информацию); - Электрический сигнал звуковой частоты надо преобразовать в акустический сигнал, который можно прослушать. Не нашли, что искали? Воспользуйтесь поиском:
|