Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Экономический анализ и оценка эффективности разрабатываемых мероприятий.




Оценка эффективности работы системы газоочистки проводилась посредством одновременного контроля концентраций в воздушной смеси на выходе из системы газоочистки (вентиляционный киоск) и на входе в систему газоочистки (подключение газоанализаторов осуществлялось через воздухозаборное устройство блока газоанализаторов системы газоочистки). Измерения проводились в трех режимах работы системы газоочистки:

· запуск с включением системы одного вентилятора системы вентиляции

· работа системы с одним вентилятором системы вентиляции

· работа системы с двумя вентиляторами системы вентиляции

Графики содержания СО и NO представлены соответственно на (рис.7.1) и (рис.7.2).

 

Рис.7.1. Концентрация оксид углерода в воздухе до и после газоочистки.

 

Рис.7.2.Зависимость доли снижения концентрации NO при работе вентиляции от концентрации NO в тоннеле.

 

Как видно из графиков в момент запуска системы газоочистки в течение 3 минут наблюдался переходной процесс, характеризующийся пониженными значениями эффективности системы газоочистки, через 22 минуты после начала измерения включен второй вентилятор. Первые три минуты были исключены из расчета эффективности системы газоочистки.

Исходя из расчетов и исследований, мы можем сделать вывод о том, что система газоочистки от автомобильного транспорта является эффективной, но не рентабельной.


Облучатель ультрафиолетовый

1)Изобретение может быть использовано для очистки наружного воздуха приточных систем вентиляции административных или жилых зданий от пыли, аэрозолей, паров и газовых примесей. Способ мокрой очистки загрязненного воздуха включает смешение потока очищаемого воздуха с потоком очищающей воды, разделение потоков очищенного воздуха и загрязненной воды, осветление загрязненной воды от пыли, подвержение осветленной воды коротковолновому ультрафиолетовому облучению и использование ее в качестве очищающей воды для очистки воздуха, содержащего летучее органическое соединение. Технический результат - обеспечение безвозвратного удаления летучего органического соединения из очищаемого воздуха водой и достижение при этом его содержания в очищенном воздухе ниже нормируемого значения среднесуточной ПДК.

Изобретение относится к способам мокрой очистки загрязненного воздуха от пыли, аэрозолей, паров и газовых примесей и может быть использовано для очистки наружного воздуха приточных систем вентиляции административных или жилых зданий, расположенных в городах и населенных пунктах, где загрязнение атмосферы летучими органическими соединениями приобрело угрожающие размеры.

Известен способ мокрой очистки воздуха от пыли, который заключается в подаче загрязненного потока воздуха в определенный объем жидкости (Патент на изобретение RU 2071671, В09С 1/00, 10.01.1997).

Недостатком известного способа является то, что при прохождении загрязненного воздуха через объем жидкости формируются пузыри, часть пыли осаждается на стенке пузыря и поступает в очищающую воду, а основная часть находится внутри объема пузыря. При всплытии пузыря на поверхность жидкости он лопается и находящаяся внутри пыль вылетает в постоянно восходящий поток очищаемого воздуха, за счет чего происходит недостаточная эффективность его очистки. К недостаткам известного способа также относится периодичность процесса очистки воздуха, связанная с необходимостью периодической замены отработанной очищающей воды.

Другой недостаток известного способа заключается в том, что используемая для очистки воздуха очищающая вода не вызывает деструкции летучего органического соединения, попадающего в ее состав.

Известен способ мокрой очистки воздуха от пыли, который включает подачу загрязненного потока воздуха на поверхность очищающей жидкости, захват и смешение под воздействием аэродинамических сил загрязненного потока воздуха и расчетного объема очищающей жидкости, последующее отделение захваченной очищающей жидкости от очищенного потока воздуха (Патент на изобретение RU 2188696, B01D 47/02, 28.05.2001). Недостатком известного способа является периодичность процесса, связанная с необходимостью периодической замены отработанной очищающей воды. Другой недостаток известного способа заключается в том, что используемая для очистки воздуха очищающая вода не вызывает деструкции летучего органического соединения, попадающего в ее состав.

Наиболее близким по технической сущности к заявляемому изобретению (прототипом) является способ мокрой очистки воздуха, включающий смешение потока очищаемого воздуха с потоком очищающей воды, разделение потоков очищенного воздуха и загрязненной воды, осветление загрязненной воды и последующее ее использование в качестве очищающей воды (Вихревые гидрофильтры «Вортекс», www.vorteks.su). Типовая эффективность очистки воздуха от пыли известным способом составляет не менее 99,5% при входной запыленности до 100 г/м3.

Основной недостаток прототипа заключается в том, что используемая для очистки воздуха очищающая вода не вызывает деструкции летучего органического соединения, попадающего в ее состав. В то же время экспериментально установлено наличие десорбции такого соединения из состава очищающей воды под воздействием постоянно контактирующего с ней потока воздуха. Это, очевидно, сопровождается вторичным загрязнением очищенного воздуха и делает неэффективной мокрую очистку воздуха водой от летучего органического соединения с использованием прототипа.

 

 

Технический результат изобретения состоит в повышении степени мокрой очистки атмосферного воздуха от летучего органического соединения водой, получении очищающей воздух воды, вызывающей деструкцию поступающего в нее летучего органического соединения, и обеспечении возможности безвозвратного удаления из атмосферного воздуха этого соединения, извлекаемого водой в процессе его мокрой очистки.

Технический результат достигается в предлагаемом способе мокрой очистки воздуха, включающем смешение потока очищаемого воздуха с потоком очищающей воды, разделение потоков очищенного воздуха и загрязненной воды, осветление загрязненной воды за счет того, что загрязненную воду после осветления подвергают коротковолновому ультрафиолетовому облучению и затем используют в качестве очищающей воды для очистки воздуха, содержащего летучее органическое соединение.

Из существующего уровня развития техники неизвестно техническое решение, включающее в свой состав прием использования для мокрой очистки воздуха очищающей воды, предварительно подвергнутой коротковолновому ультрафиолетовому облучению.

В технике известен прием очистки воды от летучего органического соединения, к примеру фенола, включающий облучение ультрафиолетовым излучением воды, содержащей фенол в своем составе (Химия и технология воды, 2008, т.30, № 3). Такой прием очистки воды от фенола основан на его фотоокислительной деструкции в водной среде под воздействием ультрафиолетового излучения. При этом в отсутствие ультрафиолетового излучения снижения в воде концентрации фенола не обнаруживают. Недостатком известного приема очистки воды от фенола, применительно к мокрой очистке воздуха, является необходимость воздействия ультрафиолетового излучения непосредственно на воду, содержащую фенол. Это очень сложно обеспечить технически в масштабах очистки приточного воздуха систем вентиляции зданий, поскольку источник ультрафиолетового излучения должен находиться в непосредственном контакте с водной средой в момент поступления в нее фенола из очищаемого воздуха.

 

В предлагаемом техническом решении летучее органическое соединение абсорбируют очищающей водой, предварительно подвергнутой коротковолновому ультрафиолетовому облучению. Такая очищающая вода, как показали лабораторные опыты, вызывает деструкцию внесенного в нее летучего органического соединения. Его деструкция в этом случае происходит, скорее всего, под воздействием возникающего продукта ультрафиолетового облучения очищающей воды, который сохраняет реакционную способность разрушать молекулы летучего органического соединения в водной среде уже после прекращения ее облучения ультрафиолетом. По всей вероятности продукт фотолиза, возникая в очищающей воде за период воздействия коротковолнового ультрафиолетового облучения, сохраняет свою реакционную способность вплоть до момента поступления летучего органического соединения в очищающую воду из очищаемого воздуха. В этот момент продукт фотолиза в составе очищающей воды, обладающий наведенной коротковолновым ультрафиолетовым облучением реакционной способностью, вступает во взаимодействие с молекулами летучего органического соединения и разрушает их.

Таким образом, не известная ранее последовательность операций по мокрой очистке воздуха, включающая смешение потока очищаемого воздуха с потоком очищающей воды, которую предварительно подвергают коротковолновому ультрафиолетовому облучению, обеспечивает возможность безвозвратного удаления из атмосферного воздуха летучего органического соединения за счет его разрушения в два не известных из существующего уровня развития техники приема. Перед подачей очищающей воды на смешение с очищаемым воздухом сначала осуществляют разрушение абсорбированного водой летучего органического соединения под непосредственным воздействием коротковолнового ультрафиолетового облучения, а затем его разрушают продуктом фотолиза в момент абсорбции очищающей водой.

Таким образом, не известная ранее последовательность операций по очистке воздуха путем смешения потока очищаемого воздуха с потоком

очищающей воды, разделение потоков очищенного воздуха и загрязненной воды, осветление от пыли загрязненной воды, заключающаяся в том, что загрязненную воду после осветления от пыли подвергают коротковолновому ультрафиолетовому облучению и используют в качестве очищающей воды для очистки воздуха, содержащего летучее органическое соединение, обеспечивает положительный результат. Он состоит в безвозвратном удалении летучего органического соединения из очищаемого воздуха водой и достижении при этом его содержания в очищенном воздухе ниже нормируемого значения среднесуточной ПДК.

Формула изобретения:

Способ мокрой очистки воздуха, включающий смешение потока очищаемого воздуха с потоком очищающей воды, разделение потоков очищенного воздуха и загрязненной воды, осветление от пыли загрязненной воды, отличающийся тем, что загрязненную воду после осветления от пыли подвергают коротковолновому ультрафиолетовому облучению и затем используют в качестве очищающей воды для очистки воздуха, содержащего летучее органическое соединение.

2)Настоящее изобретение относится к способу и устройству для уменьшения вредных компонентов и загрязняющих примесей в выхлопных газах двигателя.

Как хорошо известно, из уровня техники, двигатель внутреннего сгорания забирает атмосферный воздух, который смешивается с горючим для сжигания в камере сгорания или цилиндре, и образующиеся в результате этого выхлопные газы выводятся. Зажигание смеси воздуха с горючим в цилиндре происходит обычно от зажигающего устройства, такого, например, как свеча зажигания или подобного устройства или в результате адиабатического сжатия при температуре выше температуры воспламенения горючего.

В некоторых двигателях внутреннего сгорания, таких, например, как бензиновые двигатели, широко используемые в настоящее время, воздух поступает через канал воздухозаборника или через впускной канал, который

 

передает атмосферный воздух в карбюратор, или через приспособление для впрыска горючего, где воздух смешивается с горючим для получения смеси воздух/горючее. Затем смесь воздух/горючее поступает через впускной коллектор в камеру сгорания или цилиндр двигателя. В двигателях дизельного типа и некоторых двигателях с искровым зажиганием, таких как двигатели, использующие приспособление для впрыска горючего в цилиндр, воздух и горючее смешиваются в камере сгорания или в цилиндре двигателя.

После сгорания смеси воздух/горючее образовавшиеся выхлопные газы выталкиваются из камеры сгорания в выхлопной коллектор. Затем выхлопные газы могут поступать через, по крайней мере, одну выхлопную трубу в каталитический нейтрализатор, где происходит удаление вредных компонентов.

Понятие потока воздуха к любой камере, включая поток смеси воздух/горючее, здесь и далее относится именно к газовому потоку предкамерного горения, а понятие образовавшегося выходящего оттуда выхлопного потока здесь и в дальнейшем относится к выхлопному газовому потоку посткамерного горения. Как принято в настоящем изложении, понятие газовых потоков предкамерного и посткамерного горения вместе в дальнейшем будет относиться к потоку рабочего газа.

Двигатели внутреннего сгорания, работающие с регулируемым горением горючего, образуют выхлопные газы, содержащие продукты полного сгорания диоксида углерода (CO2) и воду (H2O), а также вредные компоненты, образующиеся в результате неполного сгорания, такие как монооксид углерода (CO2), являющийся ядовитым для человека, а также несгоревшие углеводороды (HC). Кроме того, вследствие очень высоких температур, возникающих при горении углеводородных горючих, и последующего быстрого охлаждения, образуется дополнительный вредный компонент оксид азота (NOx).

Количество вредных компонентов зависит от многих рабочих параметров двигателя, но, главным образом, на него оказывает влияние соотношение воздух/горючее в цилиндре сгорания так, что условия, способствующие

восстановлению монооксида углерода и несгоревших углеводородов (обедненная рабочая смесь при стехиометрических и высоких температурах горения) вызывает повышенное образование NOx, а условия, способствующие снижению образования NOx (смесь богатого горючего и обедненного горючего), вызывают увеличение содержания СО и несгоревшего углеводорода в выхлопных газах двигателя. Так как в современных каталитических нейтрализаторах восстановление NOx эффективнее всего при отсутствии кислорода, несмотря на то, что снижение содержания CO и HC требует кислорода, препятствуя образованию этих выделений, необходимо, чтобы двигатель работал при стехиометрическом соотношении воздух/горючее, так как при таких условиях можно использовать трехцелевые катализаторы (ТЦК), то есть три вредных компонента могут быть уменьшены одновременно. Тем не менее, при работе двигателя внутреннего сгорания значительное, в экологическом отношении, количество CO, HC и NOx выбрасывается в атмосферу.

Несмотря на то, что присутствие вредных компонентов в выхлопных газах у двигателей внутреннего сгорания признано с 1901 года, необходимость контроля выхлопных газов двигателя внутреннего сгорания в Соединенных Штатах возникла с выходом Clean Air Act в 1970 г. Производители двигателей применяли множество технологий с целью выполнения требований Clean Air Act. Было доказано, что каталитический способ представляет собой самую эффективную пассивную систему.

Автомобилестроители в большинстве случаев применяли каталитические преобразователи для осуществления катализа. Цель состоит в необходимости окисления CO и HC до CO2 и H2O и восстановлении NO/NO2 до N2. Автомобильные каталитические преобразователи выброса обычно установлены под корпусом автомобиля и расположены в выхлопном газовом потоке двигателя, как раз перед глушителем, представляющим собой чрезвычайно вредный участок, вследствие экстремальных температур, а также неожиданных структурных и вибрационных нагрузок в условиях вождения.

 

Почти все автомобильные каталитические преобразователи имеют корпуса, представляющие собой монолитные пористые структуры, обычно изготовленные из кордиерита, низкотемпературной вспененной керамики, с высокой прочностью и сопротивлением к растрескиванию в условиях термического удара. Пористая конструкция и подобранная геометрия обеспечивают относительно низкий перепад давления и большую геометрическую поверхность зоны, которая усиливает контролируемые реакции массопереноса. Пористая структура помещена в стальной контейнер и защищена от вибрации упругим материалом.

Адгезионное тонкослойное покрытие, обычно выполненное из гамма-стабилизированного оксида алюминия с введенными в него каталитическими компонентами, покрывает стенки пористой структуры. ТЦК технология одновременной нейтрализации всех трех вредных компонентов включает в себя использование благородных металлов Pt и Rh, причем Rh больше всего способствует восстановлению NOх хотя он способствует также окислению СО наряду с Pt. Недавно взамен или в комбинации с Pt и Rh был применен менее дорогостоящий Pd. Обычно активный катализатор содержит примерно от 0,1 до 0,15% благородных металлов, главным образом, платины (Pt), палладия (Pd) или родия (Rh).

Так как выхлопные газы двигателя внутреннего сгорания колеблются от слабо обогащенных до слабо обедненных, в тонкослойное покрытие добавляют кислородзапасающее вещество, которое адсорбирует кислород на обедненной стадии цикла и высвобождает его для взаимодействия с избыточным СО и HC при обогащенном потоке. Чаще всего для этой цели применяют CeO2, вследствие его подходящей окислительно-восстановительной способности.

Недавно вышедшая в 1990 году поправка с Clean Air Act требует дальнейшего значительного снижения количеств вредных примесей, выбрасываемых в атмосферу двигателями внутреннего сгорания. Для выполнения этих требований были предложены ограничения по

 

 

использованию автомобилей и грузовиков, таких как транспорт для

совместной доставки служащих, переезды HOV, возросшего использования массы транзитных перевозок, а также железнодорожных перевозок и другие подобные акции.

Одна из альтернатив усовершенствования использования автомобилей и грузовиков состоит в уменьшении выбросов посредством увеличения производительности двигателя внутреннего сгорания. Это имеет ограниченный эффект, поскольку, как показывают исследования, основное загрязнение исходит лишь от небольшой части автомобилей на дорогах, причем эти автомобили оказываются более старыми моделями с относительно неэффективными двигателями и стареющими каталитическими преобразователями, которые непременно создают массу загрязнений. До тех пор пока не будет достигнута повышенная производительность устройства, которое можно усовершенствовать при разумных затратах, маловероятно, что такие усовершенствования будут реализованы в других автомобилях и, таким образом, будет обеспечено адекватное решение проблемы.

Кроме того, хотя в последние годы были сделаны значительные достижения в уменьшении количества вредных компонентов в выхлопных газах двигателя внутреннего сгорания в автомашинах, таких как легковые автомобили и грузовики, дальнейшее уменьшение количества вредных компонентов в выхлопных газах двигателя внутреннего сгорания остается большой, сложной и дорогостоящей технологической проблемой, даже если выхлопы выпускаемых сегодня автомобилей и грузовиков не противоречат нормам, предложенным Environmental Protection Agency.

В качестве решения проблемы увеличения производительности двигателя внутреннего сгорания было предложено в Патентах США N 1333836 и 1725661 устройство для получения озона в сочетании с воздухозаборником карбюратора. Озон, будучи высоко эффективным окислителем, увеличивает полноту сгорания горючего в двигателе, уменьшая при этом вредные примеси в выхлопных автомобильных газах, а также увеличивает производительность. Эти вышеупомянутые известные

приспособления для получения озона дорогостоящи, не могут быть легко установлены в новом двигателе при производстве и не могут модифицировать существующий двигатель.

В Патенте США N 4195606 на имя Wallis, Jr. с соавторами рабочий газ для двигателя внутреннего сгорания обрабатывают с целью активирования молекул кислорода до его смешивания с горючим посредством фотохимической активации кислорода ультрафиолетовым излучением гермицидной лампы с частотой примерно равной 2537 ангстрем (253,7 нанометров). Однако, в патенте Wallis, Jr. с соавторами, как подтверждает производитель ламп, в результате действия гермицидной лампы образуется не озон. Таким образом, Wallis с соавторами подчеркивает, что предпочтительный уровень заключен в пределе между 2000 и 3000 ангстрем (от 200 до 300 нанометров), который не включает в себя длину волны от 100 до 200 нанометров, при которой образуется озон под действием лампы, генерирующей озон, согласно некоторым вариантам реализации настоящего изобретения. При длине волны выше 200 нанометров озон фотодиссоциирует, так что, если даже озон присутствует, его концентрация уменьшается при применении ультрафиолетового света с длиной волны, превышающей 200 нанометров.

Вместо снижения выхлопных газов посредством увеличения производительности двигателя внутреннего сгорания или посредством уменьшения использования автомобилей следующей альтернативой может быть увеличение эффективности катализа, такого как в каталитическом преобразователе. Эффективность преобразования отработавших газов в каталитическом преобразователе определена отношением массового удаления отдельного компонента в процентах к массовому расходу этого компонента в каталитическом преобразователе. Эффективность преобразования отработавших газов в каталитическом преобразователе представляет собой функцию многих параметров, включая изменение свойств, температуру, стехиометрию, присутствие любого яда для катализатора (такого, как свинец,

 

 

сера, углерод и фосфор), тип катализатора и время пребывания выхлопных

газов в каталитическом преобразователе.

Попытки увеличить производительность каталитических преобразователей не были достаточно успешными. Несмотря на то, что современные ТЦК каталитические преобразователи помогают, они дороги и по-прежнему оставляют все еще значительное количество вредных компонентов, выбрасываемых в атмосферу при каталитической обработке выхлопных газов. Эти преобразователи могут создавать проблемы в отношении требований по выбросам в будущем, и они имеют ограничения по эксплуатационным показателям и времени жизни. Каталитические преобразователи имеют недостаток, заключающийся в том, что их эффективность остается низкой до достижения системой рабочей температуры.

Технической задачей настоящего изобретения является создание способа и устройства уменьшения загрязняющих примесей в выхлопных газах двигателя внутреннего сгорания, использующего горючее, такое как бензин, метанол или дизельное топливо, в котором применена энергия излучения для превращения кислорода воздуха в озон в верхнем потоке воздушного впускного клапана двигателя для обеспечения более полного сгорания горючего и улучшения производительности, без необходимости существенных изменений в двигателе внутреннего сгорания или в каталитическом преобразователе.

Другая задача настоящего изобретения состоит в создании способа и устройства уменьшения загрязняющих примесей в автомобильных газах или в выхлопных газах грузовиков, которые экономичны в использовании и изготовлении, просты по своей структуре и эксплуатации, а также легко устанавливаются в новом или усовершенствованном двигателе, в двигателях существующих автомобилей.

Следующая задача настоящего изобретения состоит в создании способа и устройства уменьшения вредных компонентов в выхлопных газах двигателя

 

внутреннего сгорания, имеющего каталитический преобразователь, путем повышения эффективности преобразования отработавших газов в каталитическом преобразователе без необходимости существенных изменений в двигателе внутреннего сгорания или в каталитическом преобразователе.

Еще одна задача настоящего изобретения состоит в обеспечении более полного сгорания горючего для снижения уровня вредных компонентов в выхлопных газах и повышении производительности двигателя и эффективности использования горючего. В отличие от работы каталитических преобразователей, установленных в выхлопных трубах, дополнительная энергия должна выделяться внутри двигателя как следствие процесса сгорания.

Другая задача настоящего изобретения состоит в использовании в устройстве для уменьшения загрязняющих примесей в выхлопных газах двигателей внутреннего сгорания ультрафиолетового излучения для получения озона, использованного для усиления сгорания в двигателе внутреннего сгорания без образования дополнительных количеств оксидов азота.

Еще одна задача настоящего изобретения состоит в создании относительно недорогого способа снижения загрязнения посредством усовершенствования этого двигателя и комбинаций катализатора в уже находящихся в эксплуатации на дорогах машинах, более всего способствующих загрязнению, и которые, вероятнее всего, должны быть проверены на токсичность, а также возможность легкой установки в новых системах двигателей.

Следующей задачей настоящего изобретения является повышение производительности каталитического преобразователя путем добавления озона с целью изменения состава газов, поступающих в каталитический преобразователь в реальное время без необходимости запаса специальных химических добавок в машине.

 

 

Задачей настоящего изобретения является уменьшение выбросов, достигнутое с помощью добавления радикалов гидроксила и других промежуточных компонентов со свободным радикалом и окислителей, таких как O, H, HO2, H2О2, с целью изменения состава выхлопных газов, без необходимости держать в машине специальные химические добавки.

Задачей настоящего изобретения является также обеспечение его применения в ряде различных типов двигателей внутреннего сгорания, включая, но не ограничиваясь ими, газотурбинные двигатели, а также поршневые двигатели, включая автомобили, грузовики, стационарные электростанции, моторные лодки, мотоциклы, моторные велосипеды, газонокосилки, пилы с цепным приводом или лопастные вентиляторы, которые могут работать на различных видах горючего, такого как бензин, продукты на основе бензина, дизельное топливо, спирт, природный газ и любое другое горючее, для которого можно использовать каталитический преобразователь с целью понижения концентрации, по крайней мере, одного вредного компонента. Кроме того, настоящее изобретение может не только модифицировать существующие двигатели, но и быть реализованным во вновь спроектированных двигателях.

Указанные выше задачи решаются в устройстве для уменьшения загрязняющих примесей в выхлопных газах двигателя, согласно изобретению, содержащем, по меньшей мере, один источник света для получения энергии излучения с длиной волны, превращающей кислород воздуха, введенного в двигатель, в озон, трансформатор для приведения в действие, по меньшей мере, одного источника света, и соединитель для соединения трансформатора с электрической системой двигателя, при этом количество энергии излучения достаточно для образования озона в воздухе в количестве, достаточном для увеличения эффективности сжигания горючего в двигателе, с уменьшением, таким образом, количества углеводородов и монооксида углерода в выхлопных газах.

Источник света может представлять собой лампу излучения ультрафиолетового света. Лампа излучения ультрафиолетового света может

 

представлять собой парортутную дуговую лампу, излучающую свет, длиной волны, равной примерно 185 нанометрам.

Целесообразно, чтобы, по меньшей мере, один источник света был приспособлен излучать ультрафиолетовый свет с длиной волны меньше примерно 200 нанометров, который превращает кислород воздуха, введенный в двигатель, в озон.

Желательно, чтобы устройство дополнительно содержало датчик озона для определения содержания озона в выхлопных газах двигателя и контроллер для выключения, по меньшей мере, одного источника света при обнаружении заданного количества озона в выхлопных газах двигателя и для включения, по меньшей мере, одного источника света при обнаружении более низкого по сравнению с заданным содержания озона в выхлопных газах двигателя.

Устройство может дополнительно содержать датчик для определения, по меньшей мере, одного рабочего параметра двигателя и контроллер для регулирования количества озона, полученного с помощью генерируемого лампой ультрафиолетового света посредством регулирования напряжения и электрического тока, подаваемых на лампу, с помощью преобразователя напряжения в соответствии с параметрами двигателя, определенными датчиком. Датчик может быть приспособлен определять, по меньшей мере, один из набора параметров, включающих скорость двигателя, нагрузку на двигатель, температуру и позицию дроссельного клапана.

В устройстве двигатель может представлять собой двигатель внутреннего сгорания и, по меньшей мере, один источник света может быть расположен вверх по течению от обычного автомобильного впускного коллектора.

Устройство может дополнительно содержать несколько источников света для получения энергии излучения, превращающей кислород воздуха в озон со степенью превращения ниже требуемой для полного сгорания в двигателе, датчик для определения различных рабочих параметров двигателя и контроллер для непрерывного управления первым источником света при работе двигателя и избирательного управления дополнительными

 

источниками света, исходя из рабочего параметра двигателя, определяемого датчиком, при этом контроллер способен выключать дополнительные источники света при рабочем параметре двигателя ниже заданного уровня и включать дополнительные источники света при рабочем параметре двигателя, по меньшей мере, на заданном уровне, при этом озон повышает эффективность сжигания горючего в двигателе, снижая, таким образом, количество углеводородов и монооксида углерода в выхлопных газах. Контроллер может быть приспособлен включать каждый дополнительный источник света при отличии от заданного рабочего параметра двигателя.

Вышеуказанные задачи решаются также в способе уменьшения загрязняющих примесей в выхлопных газах двигателя, согласно изобретению, содержащем генерирование энергии излучения от источника ультрафиолетового света для превращения кислорода воздуха в озон во впускном отверстии для воздуха двигателя и пропускание воздуха через впускное отверстие для воздуха при наличии энергии излучения для превращения кислорода воздуха в озон, для обеспечения более полного сгорания горючего и повышенной эффективности.

Энергию излучения можно генерировать с помощью парортутной дуговой лампы, излучающей свет с длиной волны, равной примерно 185 нанометрам.

Способ может также содержать определение рабочих параметров двигателя и регулирование интенсивности энергии излучения в соответствии с рабочими параметрами двигателя.

Интенсивность ультрафиолетового света можно регулировать посредством дополнительных источников ультрафиолетового света.

Вышеуказанные задачи решаются также в устройстве для уменьшения вредных компонентов, образующихся при сгорании горючего в двигателе, согласно изобретению, содержащем камеру сгорания, имеющую газовый поток предкамерного горения, идущий к камере сгорания, и газовый поток посткамерного горения выхлопных газов из камеры сгорания, каталитический преобразователь для обработки выхлопных газов для уменьшения количества, по меньшей мере, одного вредного компонента, образующегося в результате,

 

по меньшей мере, одного неполного сгорания горючего и оксидов азота, по меньшей мере, одно приспособление для добавления озона в, по меньшей мере, один из газовых потоков предкамерного горения и посткамерного горения для дальнейшего снижения, таким образом, количества, по меньшей мере, одного вредного компонента в выхлопных газах, обработанных каталитическим преобразователем.

Приспособление для добавления озона способно производить озон путем превращения кислорода в озон.

Приспособление для добавления озона может включать лампу излучения ультрафиолетового света, имеющего длину волны, равную 100-200 нанометрам. Лампа излучения ультрафиолетового света может представлять собой парортутную дуговую лампу, излучающую свет, длиной волны, равной примерно 185 нанометрам.

Газовый поток предкамерного горения может содержать воздух, и лампа излучения ультрафиолетового света может быть расположена в газовом потоке предкамерного горения.

Стенки, прилегающие к лампе излучения ультрафиолетового света, могут являться отражающими ультрафиолетовый свет, образующий озон. Стенки, прилегающие к лампе излучения ультрафиолетового света, могут содержать алюминий.

Приспособление для добавления озона может быть расположено на расстоянии от газового потока предкамерного горения, и газового потока посткамерного горения, и озон может поступать в, по меньшей мере, один из газовых потоков предкамерного горения и посткамерного горения.

Приспособление для добавления озона может включать электростатический разрядный генератор озона.

Камера сгорания может быть расположена в двигателе внутреннего сгорания.

Указанные задачи решаются также способом повышения эффективности превращения каталитического преобразователя для обработки выхлопных

 

 

газов для снижения концентрации, по меньшей мере, одного вредного компонента, образующегося при сгорании горючего в двигателе, имеющем камеру сгорания с газовым потоком предкамерного горения, идущим к камере сгорания, и газовым потоком посткамерного горения выхлопных газов из камеры сгорания, при котором, согласно изобретению, используют, по меньшей мере, один источник ультрафиолетового света для превращения кислорода воздуха в озон, добавляют озон в, по меньшей мере, один из газовых потоков предкамерного горения и посткамерного горения в, по меньшей мере, одной точке вверх по течению от каталитического преобразователя для снижения концентрации, по меньшей мере, одного вредного компонента, образующегося при сгорании и обрабатывают газовый поток выхлопных газов с помощью, по меньшей мере, одного каталитического преобразователя.

Энергию излучения генерируют с помощью лампы излучения ультрафиолетового света с длиной волны, составляющей примерно 185 нанометров.

Указанные задачи решаются также устройством для уменьшения вредных компонентов, образующихся при сгорании горючего, согласно изобретению, содержащим камеру сгорания с газовым потоком предкамерного горения, идущим к камере сгорания, и газовым потоком посткамерного горения выхлопных газов из камеры сгорания, приемник с большой площадью поверхности, расположенный в газовом потоке посткамерного горения, и приспособление для добавления гидроксильных радикалов в, по меньшей мере, один из газовых потоков предкамерного горения и посткамерного горения перед выходом с большой площади поверхности приемника.

Приемник с большой площадью поверхности может представлять собой каталитический преобразователь.

Гидроксильный радикал ОН и другие свободные радикалы и окислители, такие как О, H, H2O и H2O2 могут быть введены в поток рабочего газа двигателя сгорания для уменьшения вредных компонентов и загрязняющих

 

примесей, таких как CO и HC. Было замечено, что ОН в присутствии кислорода может быстро вступать в реакцию с СО, образуя CO2. Также было замечено, что ОН в присутствии кислорода может быстро вступать в реакцию с углеводородами (HC), образуя формальдегид или другие подобные промежуточные продукты, которые, кроме того, затем вступают в реакцию с ОН, образуя 2О, CO2 и ОН. Более того, очевидно, что в результате последовательности реакций скорее не потребляется, а регенерируется ОН.

В случае СО на следующих стадиях реакции СО преобразуется в CO2 и регенерируется ОН на следующих стадиях реакции:
СО + ОН ---> CO2 + H
H + O2 ---> CO2
HO2 + h ---> ОН + O
Последний процесс диссоциации гидропероксила в гидроксил может иметь место или в результате поглощения ультрафиолетового фотона или в результате теплового разложения.

В случае с HC, типичная серия реакций может иметь следующие стадии:
HC + OH ---> HCHO
HCHO + OH ---> H2O + HCO
HCO + O2 ---> CO2 + HO
В зависимости от видов HC могут иметь место разветвленные реакции, и другие промежуточные продукты со свободными радикалами и окислители, такие как О, H, HO2, H2O2, могут быть образованы и вступать в реакцию непосредственно или через продукты других реакций, таких как:
O + O2 ---> O3 или
H2O2 + h ---> 2OH
Особенно важным является то, что, как предполагается, OH должен быть регенерирован в ходе реакций, то есть OH действует, как катализатор, и что последовательность реакций быстро развивается вследствие ярко выраженной природы реакций со свободным радикалом.

 

Предполагается, что присутствие OH и других промежуточных продуктов со свободным радикалом и окислителей, таких как О, H, H2O2 и HO2 в выхлопных газах в двигателе сгорания приводит в присутствии необходимого кислорода к высокоэффективному каталитическому разложению CO и углеводородов на не вредные газообразные CO2 и водяной пар. ОН и другие соответствующие свободные радикалы и окислители, образовавшиеся в ходе реакций, могут действовать как катализаторы самостоятельно или в сочетании с обычной каталитической активностью частиц благородных металлов (Pt, Pd, Rh и их комбинации) в каталитическом преобразователе.

Предполагается, что впрыск ОН в поток рабочего газа приводит к быстрому каталитическому воздействию на CO и HC в ламинарном потоке выхлопного газа. Предполагается, что реакционная активность OH является во многом следствием каталитической активности, связанной с превращением CO в CO2 и углеводородов - в CO2 и H2O, имеющим место в газовой фазе и на большой площади зоны с тонким поверхностным слоем каталитического преобразователя. Таким образом, в ограниченной зоне вблизи входа в каталитический преобразователь протекает большинство реакций с превращением СО и HC в CO2 и H2О. Поскольку CO и HC окислены в газовой фазе и каталитическом преобразователе с тонкослойным покрытием, что существенно способствует завершению окисления СО и HC вблизи входа в каталитический преобразователь, основная масса благородного металла каталитической поверхности освобождается от участия в этих протекающих реакциях. Например, участки с благородным металлом в преобразователе больше не нужны для катализа менее реакционно-активных разновидностей углеводорода, таких как метан, этан, этен, бензол и формальдегид. В результате этого более эффективная каталитическая активность участков с благородным металлом может быть направлена на восстановление оксидов азота до азота и других не загрязняющих газов.

Предполагается, что воздействие гидроксильных радикалов может иметь место по всему объему выхлопного газа и по всей поверхности зоны

 

каталитического преобразователя, то есть по всей большой области тонкослойного покрытия. Это способствует осуществлению более эффективного уменьшения вредного компонента, чем в каталитическом преобразователе, работающем традиционным способом. При этом новом методе каталитической конверсии восстановление может снизить содержание оксида азота до уровня ниже традиционно предельно допустимого содержания. В качестве альтернативы, более низкое содержание благородного металла или применение менее дорогостоящих металлов или их оксидов можно использовать для снижения содержания продуктов окисления азота до уровней ниже допустимых.

Несколько различных вариантов способа и устройства могут быть использованы для реализации гидроксильного варианта настоящего изобретения. В одном из вариантов реализации настоящего изобретения ОН получают в генераторе при использовании излучения парортутной лампы (Hg) и впуска атмосферного воздуха, который кондиционируют с целью обеспечения в нем достаточно высокого содержания водяного пара, и предпочтительно примерно 100% насыщения. Предполагают, что в случае воздуха с высоким содержанием водяного пара есть две альтернативные равноправные ветви реакции получения OH. В первом случае, это прямая фотодиссоциация воды на OH и H путем поглощения фотонов с длиной волны, равной 185 нм. Для достижения такой высокой влажности водяной пар может поступать из источника нагретой воды или он может поступать из потока выхлопного газа двигателя.

Другая реакция, предпочтительная при более низком, но все еще достаточно высоком содержании водяного пара, состоит в том, что ультрафиолетовое излучение с длиной волны 185 нм, исходящее от лампы, воздействует на воздух, образуя атомарный кислород (О) и озон (O3). Озон получают по трехступенчатой реакции с участием атомарного кислорода, молекулярного кислорода и любого другого молекулярного компонента воздуха, такого, например, как азот (N2), кислород (O2), вода (H2O) или аргон.

 

Ультрафиолетовое излучение с длиной волны, равной 253,7 нм, разрушает озон фотодиссоциацией на молекулярный кислород (O2) и метастабильный атом кислорода (O). Если воздушный поток, входящий в генератор, имеет достаточное содержание водяного пара, то, как предполагают, метастабильный атомарный кислород (O) вступает в комбинацию с молекулами воды, образуя перекись водорода:
O + H2O ---> H2O2
Кроме того, ультрафиолетовое излучение с длиной волны, равной 253,7 нм, фотодиссоциирует на две молекулы гидроксильного радикала.

Таким образом, генератор впрыскивает озон, атомарный кислород, перекись водорода и гидроксильные радикалы в двигатель, например, через впускной коллектор. Предполагается, что любая перекись водорода, введенная таким образом, будет диссоциирована до гидроксила при условии высокой температуры в двигателе. Гидроксил, который находится в щелевых участках камеры сгорания, должен выдерживать процесс горения в двигателе и воздействовать на CO и HC, остающиеся в выхлопном потоке, образуя CO2 и H2O в соответствии с вышеприведенными реакциями.

Генератор, образующий гидроксильные радикалы, может содержать, по меньшей мере, одну лампу излучения ультрафиолетового света с длиной волны в пределах примерно от 100 до 300 нанометров, и генератор с тлеющим разрядом, впускной канал для воздуха и средство кондиционирования воздуха внутри генератора, образующего гидроксильные радикалы, для обеспечения достаточного содержания водяного пара в воздухе, облегчающего образование гидроксильных радикалов.

Генератор, образующий гидроксильные радикалы, может иметь внутренние поверхности, соответствующим образом отражающие ультрафиолетовый свет, имеющий длину волны в пределах примерно от 100 до 300 нм.

Средство кондиционирования воздуха может иметь впускной канал для подачи воды в генератор, образующий гидроксильные радикалы. Впускной

 

канал для подачи воды может быть сообщен с газовым потоком посткамерного горения.

Устройство может дополнительно содержать контейнер для хранения воды, сообщенный с впускным каналом для подачи воды. Устройство может быть приспособлено подавать воду из внешнего источника к контейнеру для хранения воды в жидком виде или подавать воду посредством конденсации водяного пара в выхлопных газах камеры сгорания.

Устройство может также дополнительно содержать средство для поддержания хранящейся в контейнере воды при температуре, превышающей температуру внутри генератора, образующего гидроксильные радикалы, для подачи водяного пара в этот генератор.

Устройство может содержать впускной канал для подачи воздуха, сообщенный с контейнером для хранения воды. Впускной канал для подачи воздуха может иметь конструкцию, обеспечивающую барботаж воздуха, поступившего в генератор, образующий гидроксильные радикалы через воду, содержащуюся в контейнере для хранения.

Генератор, образующий гидроксильный радикал, может также содержать электролитическую ячейку сверхвысокого напряжения и лампу излучения ультрафиолетового света с длиной волны примерно от 100 до 300 нм.

Электролитическая ячейка сверхвысокого напряжения используется для получения озона в дополнение к кислороду и водяному пару, с последующим ультрафиолетовым облучением с длиной волны, предпочтительно, от 200 до 300 нм, для получения атомарного кислорода фотодиссоциацией, которая в присутствии входящего потока воздуха, обогащенного водяным паром, инициирует образование перекиси водорода, с последующим образованием гидроксила посредством ультрафиолетовой диссоциации перекиси водорода. Такое устройство, использующее парортутную лампу в качестве источника ультрафиолетового излучения, может быть очень компактным вследствие высокой эффективности при длине волны 253,7 нм и высокой поглощающей способности озона и перекиси водорода при воздействии ультрафиолетового света такой длины волны.

Целесообразно, чтобы приспособление для добавления гидроксильных радикалов было расположено на расстоянии, по меньшей мере, от одного из газовых потоков предкамерного горения и посткамерного горения и было выполнено в виде генератора, образующего гидроксильные радикалы, имеющего, по меньшей мере, одну лампу излучения ультрафиолетового света с длиной волны, равной примерно 100-300 нм, генератор с тлеющим разрядом, впускной канал для подачи воздуха, средство кондиционирования воздуха для обеспечения достаточного содержания водяного пара в воздухе, облегчающего образование гидроксильных радикалов, и выпускной канал для введения образовавшихся гидроксильных радикалов в, по меньшей мере, один из газовых потоков предкамерного и посткамерного горения, при этом приемник с большой площадью поверхности представляет собой каталитический преобразователь для обработки выхлопных газов, для уменьшения, по меньшей мере, одного вредного компонента, образующегося при неполном сгорании горючего и оксидов азота.

Приспособление для добавления гидроксильных радикалов может быть расположено на расстоянии от газового потока предкамерного горения и газового потока посткамерного горения, и гидроксильные радикалы поступают к, по меньшей мере, одному из потоков предкамерного и посткамерного горения.

Приспособление для добавления гидроксильных радикалов может содержать лампу излучения ультрафиолетового света с длиной волны, равной примерно 100-300 нм, расположенную в потоке посткамерного горения выхлопного газа, имеющем достаточно высокое содержание водяного пара.

Вышеупомянутые варианты реализации настоящего изобретения принципиально предполагают использование генераторов для образования гидроксильных радикалов, впрыскивающих потоки газов в зону впускного коллектора двигателя. Естественное преимущество таких способов состоит в том, что условие низкого давления в зонах впускного коллектора обеспечивает естественный насосный механизм. Однако недостаток этих способов состоит в

 

том, что большинство высокоактивных химических соединений, включая свободные радикалы, такие как гидроксильные радикалы, разрушаются в процессе горения и только те активные вещества в щелевых областях и на стенках камеры сгорания могут действительно сохраняться и поступать в поток выхлопного газа, где они способствуют окислению CO и HC. Напротив, генераторы, которые впрыскивают гидроксильный радикал непосредственно в поток выхлопного газа или которые образуют гидроксил в выхлопном посткамерном газовом потоке, могут более эффективно подавать активные соединения в поток выхлопного газа для окисления CO и HC.

Таким образом, потребуется меньшая мощность источника химически активных соединений для обеспечения необходимой степени восстановления. Это должно выражаться непосредственно в пропорциональных более низких электрических нагрузках на генератор гидроксильных радикалов.

Однако вследствие более высоких давлений в потоке выхлопного газа, необходимо разряжение для прямого впрыскивания из генератора в поток выхлопного газа. Применение трубки вентури способствует этому. В качестве альтернативы, вследствие высокого давления водяного пара при температуре выше примерно 120oC применение источника нагнетания водяного пара в генератор гидроксильных радикалов может также обеспечить эффективный впрыск. Такой водяной пар может быть собран конденсацией или равнозначными средствами из потока выхлопного газа.

Вариант реализации настоящего изобретения с образованием гидроксильного радикала в потоке выхлопного газа представляет собой облучение потока выхлопного газа ультрафиолетовым излучением с длиной волны в пределах примерно от 120 до 185 нм, которое в присутствии необходимого количества водяного пара образует каталитически активный OH посредством прямой диссоциации. Более того, следующий вариант реализации настоящего изобретения состоит в применении ультрафиолетового излучения при длине волны от 120 до 185 нм во внешнем генераторе, использующем впуск атмосферного воздуха и водяного пара из потока

 

выхлопного газа и впрыскивание водяного пара, OH и H в поток выхлопного газа перед каталитическим нейтрализатором или в него.

Описанные выше способы получения этих свободных радикалов включают в себя генераторы с использованием ультрафиолетового света, генераторы с тлеющим разрядом и электролитические ячейки сверхвысокого напряжения с использованием ультрафиолетового излучения. Входные потоки генератора могут содержать электричество, воду, воздух, кислород, водяной пар, водяной пар с воздухом и водяной пар с кислородом.

Способы возможного введения вышеупомянутых разновидностей в систему двигателя включают в себя введение в газовый поток предкамерного горения, например, во впускной коллектор, в поток выхлопного газа, например, в выхлопной коллектор и в каталитический преобразователь. Генераторы могут быть наружными или внутренними по отношению к этим зонам. Наиболее предпочтительная особенность наружного генератора состоит в том, что он дает возможность легкой установки генератора в удобном месте отделения двигателя или в другом месте автомобиля. Другая предпочтительная особенность варианта реализации с наружным генератором состоит в том, что гидроксильные радикалы можно вводить почти в любом желаемом месте во впуск газового потока (предкамерного горения) или газовый поток выхлопа (посткамерного горения) двигателя. Расход гидроксильных радикалов из генератора не зависит от скорости двигателя, то есть расхода воздуха в камере сгорания или расхода выхлопных газов из камеры сгорания. Таким образом, при низких скоростях двигателя массовый расход гидроксильных радикалов не будет зависеть от низкого массового расхода воздуха, поступающего в камеру сгорания. В случае наружных источников механизмы нагнетания газовых продуктов генератора могут предусматривать естественные области низкого давления в двигателе, области вентури, наружные насосы, естественное повышение давления в генераторе, например при повышенных температурах, и источники водяного пара.

Таким образом, этот вариант реализации настоящего изобретения

 

предусматривает использование гидроксильных радикалов и сопутствующих ему продуктов реакции O, H, H2O2 и HO2 для обеспечения каталитического цикла, в котором ОН играет основную роль в восстановлении продуктов CO и HC в двигателях в соответствии с настоящими и будущими стандартами Ultra Low Emissions Vehicle "ULEV" и Low Emissions Vehicle "LEV".

Поскольку OH ведет себя как катализатор, нужно впрыскивать относительно небольшие количества OH для восстановления как можно большего количества CO и углеводородов в CO2 и H2O в присутствии кислорода в потоке выхлопного газа.

Предполагается, что следующее особенное преимущество гидроксильного варианта реализации настоящего изобретения состоит в том, что вследствие введения газофазных каталитических соединений, проявляющих активность по всей поверхности каталитического преобразователя, и вследствие взаимоусиливающей реакционной активности этих соединений, будет происходить более раннее каталитическое превращение CO и не сгоревшего HC после запуска двигателя. Другими словами, фактическое запаздывание зажигания после запуска двигателя будет меньше по сравнению с применением обычного каталитического преобразователя.

В случае системы горения и других бытовых, коммерческих и промышленных систем, которые имеют выхлопные газы, содержащие органические летучие вещества (ОЛВ), но не содержащие или содержащие малые количества оксидов азота, такие как некоторые промышленные процессы, не будет необходимости в обычном каталитическом нейтрализаторе и, разумеется, не будет необходимости в каталитическом преобразователе с благородным металлом. Настоящее изобретение могло бы обеспечить очень низкую стоимость систем каталитического преобразователя. В тех случаях, когда только CO или HC и другие ОЛВ должны быть окислены, предполагается, что не требуется обычный нейтрализатор. Однако, предполагается, что соответственное время и/или большая площадь зоны, подобной той, которую дает сотовая структура обычного каталитического нейтрализатора, необходимы для того, чтобы CO, HC и ОЛВ участвовали в реакциях окисления.

Вышеуказанные задачи решаются также в способе обработки выхлопных газов для уменьшения, по меньшей мере, одного вредного компонента, образующегося при неполном сгорании горючего в камере сгорания, имеющей газовый поток предкамерного горения, по меньшей мере, воздух, идущий к камере сгорания, и газовый поток посткамерного горения выхлопных газов от камеры сгорания, при котором, согласно изобретению, добавляют гидроксильные радикалы к, по меньшей мере, одному из газовых потоков предкамерного горения и посткамерного горения и обеспечивают достаточную поверхность в камере посткамерного горения для обеспечения взаимодействия гидроксильных радикалов с выхлопными газами, образующимися при сгорании горючего.

Гидроксильные радикалы образуются на расстоянии от газовых потоков предкамерного и посткамерного горения.

Способ может дополнительно содержать образование гидроксильных радикалов путем подачи газа, получения газа, обогащенного водяным паром, имеющего достаточное содержание водяного пара, посредством добавления воды к газу, генерирования ультрафиолетового света, имеющего длину волны в пределах примерно от 100 до 300 нм, и облучения газа, обогащенного водяным паром, ультрафиолетовым светом для получения гидроксильных радикалов.

Получение газа, обогащенного водяным паром, может содержать сбор водяного пара из выхлопных газов и подачу водяного пара из выхлопных газов в газ или подогрев подаваемой воды для получения водяного пара и добавление водяного пара к газу, или подачу и накопление воды в контейнере и введение подаваемого газа в контейнер для его прохождения через воду, или введение потока выхлопных газов в генератор, образующий гидроксильные радикалы.

Способ может дополнительно содержать образование гидроксильных радикалов посредством подачи воздуха в электролитическую ячейку

сверхвысокого напряжения для получения озона, кислорода и водяного пара, генерирование ультрафиолетового света, имеющего длину волны в пределах примерно от 200 до 300 нм, и облучение ультрафиолетовым светом полученных озона, кислорода и водяного пара для получения гидроксильных радикалов.

Способ может дополнительно содержать образование гидроксильных радикалов путем подачи воздуха, получение воздуха, обогащенного водяным паром, с достаточным содержанием водяного пара и облучение потока воздуха, обогащенного водяным паром, в генераторе с коронным разрядом.

Устройство окисления воздуха

1) Генератор озона (РФ № 2331577)

Изобретение относится к области производства озона и может быть использовано в промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред. Генератор озона содержит корпус с индуктором из металлических пластин, соединенных с высоковольтным источником переменного напряжения. Стенки корпуса имеют ребра для отвода теплоты из разрядного промежутка. Одна из металлических пластин погружена в дистиллированную воду, выполняющую роль диэлектрика. Изобретением обеспечивается повышение производительности и надежности работы устройства

Известен патент РФ №2132300, кл. С01В 13/11. Озонатор содержит высоковольтный источник переменного напряжения и индуктор, выполненный в виде металлических пластин, покрытых диэлектриком, и диэлектрических пластин, причем диэлектрические пластины со стороны разрядного промежутка имеют металлическое напыление, покрытое диэлектриком.

Наиболее близким к изобретению является патент РФ №2157790, кл. С01В 13/11. Озонатор содержит корпус, высоковольтный источник переменного напряжения и индуктор, выполненный в виде металлических пластин с диэлектриком. С целью увеличения производительности озонатора

 

и упрощения конструкции диэлектрик со стороны разрядного промежутка имеет шероховатую поверхность с определенным значением шероховатости.

Озонатор, выбранный в качестве прототипа, имеет существенные недостатки, в частности невысокая производительность из-за нагрева электродов и диэлектрических пластин и соответственно деструкции озона, а также из-за сравнительно низкой диэлектрической проницаемости диэлектрика.

Техническим решением задачи является повышение производительности и надежности работы устройства.

Поставленная задача достигается тем, что в генераторе озона, содержащем корпус с индуктором из металлических пластин, соединенных с

высоковольтным источником переменного напряжения, и диэлектрик,

согласно изобретению в качестве диэлектрика использована дистиллированная вода, в которую помещена одна из металлических пластин, а стенки корпуса имеют ребра.

Новизна заявляемого изобретения обусловлена тем, что за счет использования дистиллированной воды в качестве диэлектрика повышается напряженность электрического поля, что ведет к повышению производительности генератора озона. Повышение напряженности электрического поля обусловлено высокой диэлектрической проницаемостью дистиллированной воды, которая равна 81, в то время как диэлектрическая проницаемость стекла, которое использовано в качестве диэлектрика в прототипе, 6,0-10,0. Кроме этого, за счет большей диэлектрической проницаемости дистиллированной воды по сравнению со стеклом снижается вероятность пробоя диэлектрика, что повышает надежность предлагаемого устройства.

 

(Рис. 5.1. Генератор озона)

На чертеже схематично изображен вид устройства для генерации озона. Генератор озона состоит из индуктора, состоящего из металлических пластин 1 и 2, подключенных к источнику переменного высоковольтного напряжения 3 и помещенных в корпус 4, который снабжен ребрами 5, выполняющими роль радиатора, предназначенного для отвода теплоты из разрядного промежутка 6. Металлическая пластина 2 погружена в дистиллированную воду 7, выполняющую роль диэлектрика.

Конструкция работает следующим образом. При подключении источника высоковольтного переменного напряжения 3 на металлических пластинах 1 и 2 образуется переменное высоковольтное электрическое поле. При достижении необходимой напряженности электрического поля в разрядном

промежутке 6 происходит "тихий" разряд, приводящий к образованию озона. Дистиллированная вода, в которую помещена металлическая пластина 2, за счет своей высокой диэлектрической проницаемости увеличивает напряженность электрического поля, что приводит к повышению производительности генератора озона. Так производительность предлагаемого устройства составляет 2,4 г/ч, а в прототипе 2 г/ч.

Формула изобретения:

Генератор озона, содержащий корпус с индуктором из металлических пластин, соединенных с высоковольтным источником переменного напряжения, диэлектрик, отличающийся тем, что в качестве диэлектрика использована дистиллированная вода, в которую помещена одна из металлических пластин, а стенки корпуса имеют ребра.

2)Озонатор (РФ № 2429193)

Изобретение относится к устройствам для получения озона и может быть использовано на промышленных и сельскохозяйственных предприятиях для обработки воздушных и водных сред.

Известен озонатор (пат. США № 3973133, (С01В) кл.250-532, 1976 г.) с большим числом плоских охлаждаемых электродов, в прямоугольном корпусе из электроизоляционного материала. Электроды установлены с определенным интервалом и соединены в две группы через один. Каждый электрод выполнен из двух плоских металлических листов с профилированными углублениями определенной конфигурации так, что при соединении этих листов образуются каналы, охватывающие практически всю поверхность электродов.

Электроды соединены с обмоткой высоковольтного трансформатора, а охлаждение электродов осуществляется посредством фреоновой холодильной машины.

Недостатком известного озонатора является неэффективная и сложная система охлаждения электродов, при которой для осуществления ремонта

разрядных элементов необходимо разобрать весь пакет электродов и, кроме того, система охлаждения электродов, осуществляемая посредством фреоновой холодильной машины, имеет ряд существенных недостатков:

1. Большие габариты и наличие движущихся частей;

2. Высокая чувствительность к вибрациям и отсутствие возможности плавного и точного регулирования температурного режима;

3. Токсичность рабочего газа.

Известен пластинчатый озонатор с центральным коллектором, который носит название «Озонатор «Отто» (см. В.Ф.Кожинов. Очистка питьевой и технической воды. Примеры и расчеты, М., Изд-во литературы по строительству, 1971 г., с.82-85). Озонатор «Отто» выполнен из нескольких параллельно размещаемых разрядных элементов, чередующихся в определенной последовательности, а именно: заземленный электрод, диэлектрик, электрод высокого напряжения, диэлектрик, заземленный электрод и т.д. В качестве электрода используется слой фольги или

металлической краски, плотно прилегающей к наружной поверхности полых брусков, которые являются низковольтными вследствие их заземления. Через полые бруски пропускают воду, охлаждающую электроды. Диэлектриками служат тонкие стеклянные пластины, примыкающие к заземленным электродам. Высоковольтные электроды выполнены в виде брусков и система охлаждения их водой электрически изолирована от заземления. Электроды и диэлектрик имеют квадратное сечение с центральным отверстием.

Недостатками известного озонатора являются завышенные габариты корпуса и сложность конструкции, а именно то, что каждый коллектор соединен с плоскими пластинами электродов отдельными трубками, количество которых равно количеству электродов, и их размещение внутри герметичного корпуса требует значительного свободного пространства, а следовательно, увеличения габаритов. Кроме того, озонатор сложно обслуживать и ремонтировать, так как для ремонта необходимо разобрать весь пакет электродов и рассоединить все водоподводящие и водоотводящие трубки. С увеличением числа электродов увеличиваются механические нагрузки при стягивании пакета, что

снижает надежность конструкции.

Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа озонатор (пат. США № 3801791, кл.250-532, 1976 г.), состоящий из индуктора барьерного типа, изготовленный из плоских металлических электродов прямоугольной формы, между которыми прокладываются стеклянные диэлектрические пластины и продольные рейки, создающие щелевые разрядные промежутки, через которые пропускается озонируемый газ. Весь слоистый пакет стягивается жесткой монтажной рамой, а электроды соединяются через один в два пучка. Один из них присоединяется к раме, а другой - выводится из аппарата и присоединяется к высокопотенциальной клемме высоковольтного трансформатора питания (6-20 кВ). Рама с пакетом электродов монтируется в металлическом кожухе, а пространство между кожухом и пакетом заполняется газонепроницаемым электроизоляционным материалом. Рама электрически связывается с корпусом, который заземляется. Для отвода тепла,






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных