ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ОБЩИЕ СВЕДЕНИЯ О КАМЕННЫХ И АРМОКАМЕННЫХ КОНСТРУКЦИЯХВвиду повсеместности и доступности сырья, долговечности и экономичности конструкции из природного камня возводились еще в каменном веке. Позже в качестве каменных конструкциях применялся тесаный камень, кирпич-сырец, обожженный кирпич. Под каменными конструкциями понимают несущие и ограждающие конструкции зданий и сооружений, выполненные путем соединения отдельных камней или каменных изделий строительным раствором. До наших дней сохранилось много выдающихся памятников каменного зодчества: храмы Киевской Руси 10в., Архангельский собор в Московском Кремле 1333г., Кремлевские стены 1367г. И т.д. Желание зодчих совершенствовать конструкции требовало разработки способов их расчета. В 1638г. Галилей впервые определил несущую способность изгибаемого бруса в предположении, что в нем возникает такая же осевая растягивающая сила, как при осевом разрыве, и что в месте излома брус вращается вокруг грани сечения. В конце 18 века Кулон предложил теорию расчета каменного свода. В середине 19 века русский инженер Паукер дал более точное графическое определение несущей способности каменного свода. В 1813г. В Англии была построена железокирпичная фабричная труба, а в 1825 г. –тоннель под Темзой из армированной кладки. В 1853 г. В Вашингтоне сооружен большой железокирпичный резервуар для воды. Достаточно широкое применение нашли армокаменные конструкции и в нашей стране при строительстве зданий с армокирпичным каркасами. Широко используются традиционные материалы и конструкции. С 1955 года каменные и армокаменные конструкции рассчитываются по предельным состояниям. В развитии теории и практики каменных конструкций велика роль В.П. Некрасова, Л.И. Семенцова, С.В. Полякова, Ю.М. Иванова и др. Применение каменных и армокаменных конструкций нашло во всех климатических районах в качестве несущих и ограждающих конструкций для центрально и внецентренно сжатых с ограниченным эксцентриситетом элементов. Армокаменные конструкции по свойствам приближаются к ж/б. Достоинства каменных и армокаменных конструкций: -сравнительная дешевизна и доступность материала; -высокие прочностные характеристики Недостатки: -большая теплопроводность; - высокая трудоемкость; -сезонная ограниченность ведения работ; При проектирование каменных и армокаменных конструкций соблюдают требования СНиП 11-25-80 Каменные и армокаменные конструкции Кирпич и камни для каменных и армокаменных конструкций выпускают следующих марок: камни малой прочности (легкие бетонные и природные)-4;7;15;25;35;50 Камни средней прочности (кирпич, керам., природные, бетонные)-75;100;125;150;200 Камни высокой прочности (кирпич, природные, бетонные)-250;300;400;500;600;800;1000 Для строительных растворов установлены марки-4;10;25;50;75;100;150;200. Марки 150 и 200 применяют для отдельно стоящих и наиболее нагруженных элементов. Растворы плотностью (в сухом состоянии) 1500 кг/м3 и более называются тяжелыми, до-легкими. Марки по морозостойкости F 10-300, в зависимости от класса здания и режима эксплуатации проектные марки 15-50 Для армирования применяют следующие классы арматуры: для сетчатого-А-1; Вр-1; для продольной и поперечной арматуры, анкеров, связей-А-1;А-11;Вр-1 Применение: для кладки наружных стен с сухим и нормальным влажностным режимом рекомендуется применять сплошную кладку из пустотелого кирпича, керамических и легкобетонных камней, с влажным режимом при условии защиты внутренней поверхности пароизоляцией, с мокрым режимом и для наружных стен подвалов и цоколей не допускается. Сплошные керамические кирпичи и камни из тяжелого бетона применяют для сплошной кладки в цоколях, стенах подвала, в стенах неотапливаемых зданий. Кирпич марок 150 и более применяется в зданиях высотой более пяти этажей. Силикатный кирпич не применяется для кладки стен подвалов, и при мокрых и влажных режимах. Прочность и деформативность кладки зависит от многих факторов: -от прочности и деформативности камня и раствора -размера и формы камня -подвижности раствора и степени заполнения им вертикальных швов -качества кладки -квалификации каменщика и т.д. Прочность каменных материалов определяют по результатам испытаний образцов-эталонов на сжатие. Кирпич дополнительно испытывается и на изгиб. Предел прочности камня на сжатие в 10-15 раз выше предела прочности на растяжение. По пределу прочности на сжатие устанавливают марку кирпича. Каменные материалы являются хрупкими, строительные растворы в затвердевшем состоянии упругопластичными. Каменная кладка, несущая способность которой обеспечивается совместной работой этих материалов, являются нелинейно деформируемым материалом. При восприятии кладкой сжимающих усилий поперечные деформации строительных растворов в горизонтальных швах значительно превышают поперечные деформации каменных материалов, поэтому кладка разрушается от растягивающих усилий в камне, возникающих под влиянием поперечных деформаций раствора. Увеличение толщины шва ведет к уменьшению прочности кладки. Разрушение кладки начинается с раскрытия вертикальных швов и появления мелких вертикальных трещин в отдельных камнях. При дальнейшем нагружении вертикальные трещины соединяются по высоте и расчленяют кладку на отдельные столбы, затем при дальнейшем увеличении нагрузки происходит потеря устойчивости кладки. Прочностные и деформативные характеристики кладки получают путем испытания призматических образцов с размерами основания 38*38; 51*51 см. высотой 110-120 см. Прочностные характеристики кладки: -временное сопротивление сжатию Rи -расчетное сопротивление осевому сжатию R -расчетное сопротивление осевому растяжению Rbl -расчетному сопротивлению растяжения при изгибе Rtb -расчетное сопротивление срезу Rsq Деформативные характеристики кладки: -модуль упругости кладки (начальный модуль деформации) Ео -упругая характеристика кладки α -модуль деформации кладки Е -коэффициент ползучести кладки γcr -коэффициент линейного расширения αt -коэффициент трения μ
Величина Rи определяется по данным испытаний. Величина R = Rи /k, где k-коэффициент, зависящий от вида камня; для камня и кирпича всех видов, бута, бутобетона k=2; для крупных и мелких блоков из ячеистых бетонов k=2.25 (данные R даны в СНиП 11-22-81). При назначении расчетных сопротивлений кладки сжатию учитывают коэффициент условий работы: γc-для летней кладки; γcl –для зимней кладки, выполненной способом замороживания (СНиП 11-22-81 т.33) Величина Rbl; Rsq; Rtb зависят от вида сечения, по которому происходит разрушение кладки. При этом возможны два случая разрушения: -по неперевязанному сечению, которыми являются горизонтальные швы кладки -по перевязанному сечению, которыми являются вертикальные швы кладки, в этих случаях сечение имеет ступенчатую форму Значения Rtb Rsq Rbl приведены в СНиП 11-22-81 т. 10 Значение Ео при кратковременном нагружении принимается равным Ео = α tgφо , также пропорционален временному сопротивлению осевого сжатия Ео = α Rи Значение упругой характеристики α, зависящей от типа кладки, для основных видов кладки находится в СНиП 11-22-81 При расчете кладки на действие постоянных и длительных нагрузок с учетом ползучести, модуль упругости уменьшается на коэффициент ползучести γcr, принимаемые: 1,2- для кладки из керамического кирпича; 1,8- для керам. камней с вертикальными щелевыми пустотами; 2,8-для кладки из крупных блоков; 3-для кладки из силикатного кирпича и блоков из бетона с пористыми заполнителями. Значение Е= tgφ- тангенс угла наклона касательной к кривой в точке с заданным уровнем напряжений. Модуль деформации применяют в расчетах по 1 и 11 группам предельных состояний каменных конструкций. Работающих в сооружениях совместно с элементами конструкций из других материалов, при этом Е=0,5Ео При определение деформаций кладки в статически неопределимых рамных системах Е=0,8Ео Модули упругости и деформации кладки из природных камней принимают по результатам экспериментальных исследований. Относительная деформация с учетом ползучести: ε=νσ/ Ео, где ν-коэфф., учитывающий влияние ползучести кладки; σ-напряжение в кладке при длительном загружении.
Не нашли, что искали? Воспользуйтесь поиском:
|