Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Структурно-функциональная организация эукариотической клетки




Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе.

В клетке выделяют 3 части: плазмалемма, цитоплазма, ядро.

Цитоплазма состоит из гиалоплазмы (клеточный сок, или цитозоль), органелл (постоянные органоиды) и включений (временные органоиды).

В клетке более 90 элементов таблицы Менделеева. Сходство клеток по элементам и веществам свидетельствует о материальном единстве живого и о происхождении живого от неживого.

 

Ядерный аппарат

Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются сегментированные ядра. Размеры ядер - от 3 до 10 мкм в диаметре. Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Клеточное ядро состоит из оболочки, ядерного сока, одного или нескольких ядрышек и хроматина.

Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран – внешней и внутренней, между которыми располагается околоядерное (перинуклеарное) пространством. Последнее может сообщаться с канальцами цитоплазматической сети. Внешняя мембрана ядерной оболочки непосредственно контактирует с цитоплазмой клетки, имеет ряд структурных особенностей, позволяющих отнести ее к собственно мембранной системе ЭПР. На ней располагается большое количество рибосом, как и на мембранах эргастоплазмы. Внутренняя мембрана ядерной оболочки рибосом на своей поверхности не имеет, но структурно связана с ядерной ламиной – фиброзным периферическим слоем ядерного белкового матрикса.

В ядерной оболочке имеются ядерные поры диаметром 80—90 нм, которые образуются за счет многочисленных зон слияния двух ядерных мембран и представляют собой как бы округлые, сквозные перфорации всей ядерной оболочки. Поры играют важную роль в переносе веществ в цитоплазму и из нее. Ядерный поровый комплекс (ЯПК) с диаметром около 120 нм имеет определенное строение (состоит из более 1000 белков – нуклеопоринов, масса которых в 30 раз больше, чем рибосома), что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некоторое молекулярное сито, пропуская частицы определенного размера пассивно, по градиенту концентрации (ионы, углеводы, нуклеотиды, АТФ, гормоны, белки до 60 кДа). Поры не являются постоянными образованиями. Число пор увеличивается в период наибольшей ядерной активности. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1 мкм2 ядерной оболочки приходится около 30 пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1 мкг оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Ядерный сок (кариоплазмаили матрикс)– внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые, или фибриллярные, белки,с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации — гетероядерные РНК (гяРНК), которые здесь же подвергаются процессингу, превращаясь в мРНК.

Ядрышко – обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез рРНК, других видов РНК и образование субъединиц рибосом. Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены рРНК. Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15 и 21-22 пары) — ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками. С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

 

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.

Рибосома это округлая рибонуклеопротеиновая частица диаметром 20-30 нм. Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). В малую субъединицу входят молекулы белка и одна молекула рибосомальной РНК (рРНК), во вторую – белки и три молекулы рРНК. Белок и рРНК по массе в равных количествах участвуют в образовании рибосом. рРНК синтезируется в ядрышке.

Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма — с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока). Рибосомы могут свободно находиться в цитоплазме или быть связанными с эндоплазматической сетью, входя в состав шероховатой ЭПС Белки, образовавшиеся на рибосомах, соединенных с мембраной ЭПС, обычно поступают в цистерны ЭПС. Белки, синтезируемые на свободных рибосомах, остаются в гиалоплазме. Например, на свободных рибосомах синтезируется гемоглобин в эритроцитах. В митохондриях, пластидах и клетках прокариот также присутствуют рибосомы.

Патология рибосом

В условиях патологии рибосомы могут строить хорошо очерченные геометрические фигуры. Например, при воздействии афлотоксина и в опухолевых клетках лимфомы Беркита они имеют вид спирали. Аналогичные изменения наблюдаются в клетках при гипотермии, при кислородном голодании и дефиците белка в организме.

Патология ядра

В условиях патологии в ядрах могут появляться вакуоли. Вакуоли обнаруживаются в гепатоцитах при различных метаболических нарушениях и опухолевых клетках. Различают три типа необратимых морфологических изменений ядра: пикноз, кариорексис и кариолизис.

1. Пикноз. Неблагоприятным исходом конденсации и маргинации хроматина под ядерной оболочкой может быть необратимая тотальная его конденсация по всей площади ядра. Тогда ядро становится гомогенным и сморщенным. Очевидно, что когда ядро пикнотично, оно мертвое. Нити хроматина конденсируются в результате действия ДНК – азы и их деструкция наступает более или менее быстро.

2. Кариорексис (rexis-разрыв). Это раскалывание конденсированного хроматина обычно на небольшие по объему, неправильной формы фрагменты, которые могут находиться внутри ядерной мембраны, если она сохранена или располагается в цитоплазме при ее деструкции.

3. Кариолизис (lysis –растворение, расплавление). Это вид смерти ядра, при котором хроматин более или менее тотально дезинтегрирован и не окрашивается. Создается впечатление, что ядро лишено хроматина, исчезающего вследствие абсорбции окружающей цитоплазмой.

Считают, что кариопикноз, кариорексис и кариолизис существуют как последовательные стадии смерти ядра. Клетки, содержащие множество ядер, встречаются и в нормальном состоянии, например: остеокласты, мегакариоциты. Но они встречаются часто и в условиях патологии, например: клетки Ланганса при туберкулезе, множество опухолевых клеток. Число ядер может колебаться от нескольких единиц до нескольких сотен, а объем отражен в гигантских многоядерных клеток различен. В одних случаях их образование обусловлено слиянием мононуклеарных клеток, в других оно осуществляется благодаря делению ядер без деления цитоплазмы. Считают также, что их образование может быть следствием некоторых аномалий митоза после облучения или введения цитостатиков, а также при злокачественном росте. К аномалиям относят также трех-, четырех- и мультиполярные митозы.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2019 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных