Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Таким образом, электрическая емкость плоского конденсатора




 

Пример 2. Сферический конденсатор. Сферический конденсатор состоит из двух концентрических металлических обкладок 1 и 2 сферической формы, радиусы которых соответственно равны R1 и R2 > R1. Пусть + q- заряд первой обкладки, а – q- заряд второй обкладки. Напряженность поля в конденсаторе направлена радиально: E=Er, причем

 

 

где e - относительная диэлектрическая проницаемость среды, заполняющей конденсатор. Так как

 

 

то разность потенциалов обкладок

 

 

Электрическая емкость сферического конденсатора

 

 

Пример 3. Цилиндрический конденсатор. Цилиндрический конденсатор состоит из двух тонкостенных металлических цилиндров высотой l и радиусами R1 и R2>R1, вставленных друг в друга. Пусть заряд внутренней обкладки радиусом R1 + q, а внешней, радиусом R2 q. Если l>>(R1 и R2), то, пренебрегая искажениями поля вблизи краев конденсатора, можно приближенно считать, что поле конденсатора такое же, как поле двух цилиндров бесконечной длины, заряженных с линейными плотностями зарядов t=q/l и -t. Внутри конденсатора поле создается только внутренней обкладкой. Так как s=t/(2pR1)=q/(2pR1l), следует что напряженность поля в диэлектрике с относительной диэлектрической проницаемостью e, заполняющем поле между обкладками конденсатора (R1£r£R2), равна Er=q/(2pee0 lr). (смотрите вывод в лабораторной работе № 1)

Так как

 

 

то разность потенциалов обкладок конденсатора

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных