ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ
Измерительная схема представляет собой совокупность сопротивлений, индуктивностей, емкостей и иных элементов электрической цепи прибора и имеет своей основной задачей преобразовать измеряемую физическую величину В большинстве электромеханических приборов выходным перемещением
Чтобы каждому значению измеряемой величины В большинстве электроизмерительных приборов противодействующий момент создается плоской спиральной пружинкой 6, для которой справедливо соотношение:
где
Решение этого уравнения представляет собой градуировочную характеристику прибора. Из (3) следует, что характер градуировочной характеристики определяется видом функциональной зависимости (2). Подвижная часть измерительного механизма представляет собой колебательную систему. Для того чтобы в процессе достижения установившегося положения стрелка прибора не испытывала слишком долгих колебаний в электромеханических приборах, применяются успокоители, создающие момент успокоения, пропорциональный скорости перемещения стрелки:
где Различают воздушные, жидкостные и магнитоиндукционные успокоители. В воздушных и жидкостных успокоителях успокоение достигается торможением специального элемента подвижной части (лепестка, поршня) за счет трения о воздух или жидкость. В магнитоиндукционных успокоителях торможение осуществляется за счет взаимодействия магнитных полей магнита и токов, индуцированных в проводящих элементах подвижной части при их движении в поле этого магнита. Наиболее распространенными в практике технических измерений являются электромеханические приборы магнитоэлектрической и электромагнитной систем.
Устройство прибора схематически изображено на рисунке 5. Между полюсами постоянного магнита NS с помощью полюсных наконечников 3 и цилиндрического сердечника 2 создается воздушный зазор такой формы, что силовые линии магнитного поля при любом положении рамки 1 перпендикулярны ее проводникам. Сила, действующая на одну сторону рамки в магнитном поле (рисунок 6), определяется законом Ампера: На другую сторону рамки действует такая же сила, но противоположно направленная. Момент сил определяется как произведение силы на плечо. Следовательно, Значения Ток к рамке подводится через две спиральные пружины, которые одновременно служат для создания противодействующего момента. Момент, создаваемый пружиной, пропорционален углу закручивания, поэтому Учитывая, что в момент отсчета, когда стрелка неподвижна,
Таким образом, угол поворота рамки и стрелки-указателя пропорционален току, т.е. прибор может быть отградуирован как амперметр. На основании закона Ома имеем После подстановки получаем:
Поскольку отношение Демпфирующий момент в магнитоэлектрических приборах создается за счет вихревых токов, возникающих в алюминиевом каркасе рамки при перемещениях подвижной системы. Магнитоэлектрические амперметры и вольтметры являются основными измерительными приборами в цепях постоянного тока. Приборы магнитоэлектрический системы обладают высокими точностью и чувствительностью, малым собственным потреблением энергии. Они имеют равномерную шкалу (угол отклонения стрелки пропорционален току), их показания почти не зависят от влияния внешних магнитных полей. Основной недостаток этих приборов – невозможность измерений в цепях переменного тока. Для измерений в цепях переменного тока магнитоэлектрические приборы включают через выпрямители. Высокочувствительный магнитоэлектрический прибор, соединенный с выпрямительной схемой, называют прибором выпрямительной системы. Выпрямительные элементы (диоды) монтируют в корпусе прибора и обеспечивают одно- или двухполупериодное выпрямление переменного тока. Приборы выпрямительной системы находят широкое применение. Обычно их изготовляют комбинированными, т.е. предназначенными для измерения тока, напряжения, сопротивления в цепях постоянного и переменного тока с различными пределами измерения. Выпрямительные схемы вносят дополнительные погрешности в измерения, поэтому класс точности приборов выпрямительной системы относительно невысок и обычно составляет 1,5–2,5. Приборы электромагнитной системы. В основе работы приборов электромагнитной системы лежит принцип механического взаимодействия магнитного поля и ферромагнитного материала.
Вращающий момент пропорционален квадрату тока, так как магнитные поля катушки и сердечника создаются одним и тем же измеряемым током, проходящим по катушке:
Последнее выражение показывает, что угол отклонения стрелки пропорционален квадрату тока или напряжения. Шкала прибора квадратичная, сжатая вначале. Приборы электромагнитной системы широко применяют для измерений в цепях постоянного и переменного токов. Они просты и надежны, обладают высокой перегрузочной способностью и механической прочностью. Однако этим приборам присущ ряд недостатков, основными из которых являются низкая чувствительность, невысокая точность, значительное собственное потребление энергии, неравномерность шкалы, влияние внешних магнитных полей на показания приборов.
Приборы электродинамической системы. Приборы электродинамической системы основаны на принципе механического взаимодействия проводников, по которым проходит ток.
Амперметры и вольтметры электродинамической системы имеют квадратичную шкалу. Широко распространены электродинамические ваттметры – приборы для измерения электрической мощности в цепях постоянного и переменного токов. Электродинамические ваттметры имеют равномерную шкалу. Основное достоинство приборов электродинамической системы – большая точность измерений в цепях постоянного и переменного тока. К недостаткам этих приборов следует отнести значительное собственное потребление энергии и подверженность воздействию внешних магнитных полей. Разновидностью приборов электродинамической системы являются ферродинамические приборы, у которых для повышения вращающего момента магнитный поток неподвижной катушки создается в специальном магнитопроводе. Конструкция ферродинамического прибора аналогична конструкции прибора магнитоэлектрической системы, у которого постоянный магнит заменен электромагнитом. Для уменьшения потерь на вихревые токи магнитопровод ферродинамического прибора изготовляют из тонких листов электротехнической стали или прессуют из ферромагнитного порошка с электроизоляционным наполнителем. Ферромагнитный сердечник вносит дополнительные погрешности в измерения, однако, применение высококачественных материалов и совершенной технологии изготовления позволяет получить ферродинамические ваттметры класса точности 0,2. Существенным недостатком приборов ферродинамической системы является зависимость их параметров от частоты измеряемого тока.
Кроме рассмотренных выше систем существует еще целый ряд других систем. Например, электростатическая система, в основе которой лежит взаимодействие двух систем заряженных проводников, одна из которых является подвижной; индукционная система, в основе которой лежит взаимодействие магнитных потоков электромагнитов и вихревых токов, индуцированных магнитными потоками в подвижной части, выполненной в виде алюминиевого диска; тепловая система, основанная на изменении длины проводника, по которой протекает измеряемый ток.
где
При перегреве рабочего спая термопары на величину
где Таким образом, при прохождении измеряемого тока через нагреватель в цепи магнитоэлектрического прибора возникает постоянный ток
где Так как действие прибора основано на тепловом действии тока, то понятно, что магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднее квадратическое значение переменного тока любой формы. Шкала термоэлектрического прибора близка к квадратичной.
Термоэлектрические приборы получили распространение преимущественно для измерения токов. В качестве вольтметров они практически не применяются, так как их входное сопротивление чрезвычайно мало. К достоинствам приборов термоэлектрической системы можно отнести высокую чувствительность к измеряемому току, широкий диапазон частот, а также возможность измерения средних квадратических значений токов произвольной формы. Недостатком термоэлектрических приборов является неравномерность шкалы, зависимость показаний от температуры окружающей среды и большая инерционность термопреобразователей. Термоэлектрические приборы очень чувствительны к перегрузкам. В зависимости от назначения термоэлектрические приборы имеют различные пределы измерения (от 1 мА до 50 А), классы точности (от 1,0 до 2,5) и частотный диапазон (от 45 Гц до сотен мегагерц).
Не нашли, что искали? Воспользуйтесь поиском:
|