Главная | Случайная
Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Энтропия как функция состояния. Энтропия идеального газа




 

Величина S, определяемая соотношением (только для обратимых процессов), называется энтропией системы. Это понятие было введено в термодинамику Клаузиусом в середине XIX века.

Несмотря на то, что изменение количества теплоты зависит от процесса, энтропия является функцией состояния. Для необратимых процессов будет выполняться неравенство: . Интегрируя обе части полученного выражения получим неравенство, которое называется неравенством Клаузиуса: , которое для квазистатических (процессов, состоящих из непрерывно следующих друг за другом равновесных состояний) процессов переходит в равенство .

Пусть система может переходить из начального состояния 1 (рис. 1.18) в конечное состояние 2 несколькими способами, каждый из которых является квазистатическим процессом. Возьмём два из них I и II. Эти процессы можно объединить в один квазистатический круговой процесс 1"I"2"II"1. Применим равенство Клаузиуса:

или

или, наконец,

(1.78)

Количество теплоты, полученное системой, делённое на абсолютную температуру Т, при которой оно было получено, иногда называют приведённым количеством теплоты. Величина есть элементарное приведённое количество теплоты, полученное в бесконечно малом процессе, а интеграл можно назвать приведённым количеством теплоты, полученным в конечном процессе. Тогда равенству Клаузиуса (1.78) можно дать следующую формулировку: приведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода, а определяется лишь начальным и конечным положениями системы. Этот результат позволяет ввести новую функции состояния – энтропию. То есть энтропия – функция состояния.

Рассчитаем энтропию идеального газа. Для этого используем первое начало термодинамики:

. (1.79)

Подставим (1.79) в выражение, определяющее энтропию:

. (1.80)

Это равенство также доказывает, что энтропия – функция состояния, поскольку при выводе не было сделано никаких предположений по поводу происходящего в системе процесса.




Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2018 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных