Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Емкость в цепи переменного тока




 

Положим теперь, что участок цепи содержит конденсатор емкости , причем сопротивлением и индуктивностью можно пренебречь. Выясним, по какому закону будет изменяться напряжение на концах участка цепи в этом случае. Полагаем, что сила тока изменяется по закону .

Напряжение на конденсаторе равно

. (6.4)

Ток можно записать через величину заряда протекающего через сечение проводника и увеличивающего заряд конденсатора за промежуток времени

. (6.5)

Тогда заряд конденсатора можно найти интегрированием

. (6.6)

Поскольку сила тока в цепи изменяется по закону

, (6.7)

то заряд равен

. (6.8)

Постоянная интегрирования здесь обозначает произвольный постоянный заряд конденсатора, не связанный с колебаниями тока, и поэтому мы положим . Следовательно, с учетом формулы (6.4) можно записать для напряжения

(6.9)

 
 

 

 


Рисунок 6.4 Рисунок 6.5

Сравнение выражений (6.7) и (6.9) показывает, что при гармонических колебаниях тока в цепи напряжение на конденсаторе изменяется также по гармоническому закону, однако колебания напряжения на конденсаторе отстают по фазе от колебаний тока на

Изменение тока и напряжения во времени изображено графически на рисунке 6.5.

Полученный результат имеет простой физический смысл. Напряжение на конденсаторе в какой – либо момент времени определяется существующим зарядом конденсатора. Но этот заряд был образован током, протекавшим предварительно в более ранней стадии колебаний. Поэтому колебания напряжения, как и колебания заряда, запаздывают относительно колебаний тока. Так, например, когда в момент времени сила тока равна нулю (рисунок 6.5), то на пластинах конденсатора еще имеется заряд, перенесенный током в предыдущий промежуток времени, и напряжение не равно нулю. Для обращения в нуль этого заряда нужно, чтобы в течение промежутка времени, равного , проходил ток положительного направления. Однако, когда заряд конденсатора (а значит, и напряжение) станет равным нулю, сила тока уже не будет равна нулю (рисунок 6.5)–она принимает максимальное значение.

Формула (6.9) показывает, что амплитуда напряжения на конденсаторе равна

. (6.10)

Сравнивая это выражение с законом Ома для участка цепи постоянного тока , мы видим, что величина

, (6.11)

зависящая от емкости конденсатора , играет роль сопротивления участка цепи. Поэтому она получила название кажушегося сопротивления емкости или емкостным сопротивлением. Емкостное сопротивление равно отношению амплитуды напряжения на емкости к амплитуде силы тока в цепи. В Международной системе единиц СИ емкостное сопротивление выражается в омах. . Емкостное сопротивление равно величине, обратной произведению электрической емкости (в ) и циклической частоты переменного тока ).

Полученные результаты можно представить в виде векторной диаграммы (рисунок 6.6). Здесь вектор, изображающий колебания напряжения, уже не совпадает с осью токов. Он повернут в отрицательном направлении (по часовой стрелке) на угол . Модуль этого вектора равен амплитуде напряжения .

 

Рисунок 6.6

Из формулы (6.11) видно, что сопротивление емкости зависит также от частоты . Поэтому при очень высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных