ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Энергия системы зарядовПусть имеются заряды q 1 и q 2, находящиеся на расстоянии r 12. Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сближение зарядов можно произвести приближая q 1 к q 2, либо наоборот. В обоих случаях совершается одинаковая работа. Работа переноса заряда q 1 из бесконечности в точку, удаленную от q 2 на r 12, равна:
где
где
Для того чтобы в выражении энергии системы оба заряда входили симметрично, напишем его следующим образом:
В случае N зарядов потенциальная энергия системы равна:
где
где U – напряжение на конденсаторе. Заменяя U через отношение заряда к емкости и переходя к дифференциалам, получим:
Интегрируя, получим:
Энергию конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это для плоского конденсатора. Подставим в выражение для энергии конденсатора выражения для емкости плоского конденсатора, тогда:
Так как
Формула (23) связывает энергию конденсатора с зарядом на его обкладках, формула (24) – с напряженностью поля. Логично поставить вопрос: где же локализована (т.е. сосредоточена) энергия, что является носителем энергии – заряды или поле? В пределах электростатики, изучающей постоянные во времени поля неподвижных зарядов, дать ответ на этот вопрос невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля могут существовать независимо от возбудивших их зарядов и распространяться в пространстве в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Следовательно, носителем энергии является поле. Если поле однородно, заключенная в нем энергия распределяется в пространстве с постоянной плотностью
Этой формуле можно придать вид:
заменив D (14), получим плотность энергии в диэлектрике:
Первое слагаемое совпадает с плотностью энергии поля Не нашли, что искали? Воспользуйтесь поиском:
|