Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Параметры преобразователя 12/220




Данный преобразователь напряжения испытывался нагрузкой 100 Вт. Потребляемый ток преобразователя не более 10А, потребляемый ток без нагрузки не более 1А. Преобразователь выдерживает пусковые токи электронасоса, электродрели. Максимальное падение напряжения на выходе — 10 В.

 

В настоящее время интернет пестрит всевозможными схемами инверторов 12-220 Вольт, которые построены на микросхемах серии TL и полевых транзисторах и нет ни одной схемы максимально простой, на отечественной элементной базе. Я решил заполнить этот пробел.

Предлагаю для повторения очень простую и надежную схему инвертора (преобразователя) напряжения из 12В в 220вольт, для энергосберегающей лампы. Схема до безобразия проста и вместе с тем очень надежна, запускается без каких либо проблем сразу, содержит всего два транзистора и три детальки в обвязке - проще не бывает.

Рис. 1. Принципиальная схема простого инвертора напряжения 12В - 220В на двух транзисторах.

В качестве трансформатора использовал ферритовые чашки с такимим размерами: диаметр - 35 мм, высота - 20мм. Намотка данного трансформатора не имеет никаких особенностей. Фото феррита, катушки и собранного трансформатора для инвертора напряжения прикладываю ниже.

Рис. 2. Ферритовые чашки для изготовления трансформатора к инвертору напряжения.

Сперва мотается первичная обмотка, она содержит 14 витков провода диаметром 0,5 мм, после намотки ее нужно обернуть изолентой в один слой. Вторичная обмотка трансформатора мотается проводом диаметром 0.2мм и содержит 220 витков, поверх ее также обматываем изолентой в один слой. Все, трансформатор готов, осталось только собрать половинки и посадить на болтик.

Рис. 3. Каркас трансформатора с намотанными катушками индуктивности.

Рис. 4. Готовый трансформатор для схемы простого инвертора напряжения 12В - 220В.

Методом проб и ошибок подобрал для схемы транзисторы, ориентируясь на минимальный ток потребления схемы. Получилась пара КТ814 и КТ940, затем были подобраны сопротивления и емкость. В результате моих опытов получилась вот такая схема с указанными номиналами, она приведена выше.

Данная конструкция простого инвертора напряжения отлично подходит для питания энергосберегающей лампы мощностью в 8,9,11 Ватт. Лампы мощностью в 20 ватт не хотят работать, скорее всего вторичка слабовата - переделывать я не стал. Лампа мощностью в 9 ватт светит так же ярко как и при питании напрямую от сети переменного тока 220В. Потребляемый ток схемы преобразователя напряжения колеблется в пределах 0.5 - 0.54 Ампера.

Рис. 5. Внешний вид готового устройства в сборе.

Рис. 6. Размеры конструкции в сравнении.

Если использовать вместо транзистора КТ940 транзистор КТ817 и аналогичные то ток, потребляемый схемой инвертора напряжения и лампой, возрастает до величины 0,86 Ампера. Данная конструкция простого инвертора напряжения доступна к изготовлению всем радиолюбителям и начинающим. Преимущества данной конструкции очевидны: простота изготовления и надежность в работе.

Нужно отметить что очень много радиолюбителей проживает в сельской местности и не имеют возможности приобрести импортные детали, к тому же хоть и недорого но стоят денег те же полевые транзисторы, которые при ошибке тут же могут сгореть или выйти из строя, не говоря уже о микросхемах.

Рис. 7. Подключение инвертора напряжения к батарее и энергосберегающей лампе.

Рис. 8. Самодельный инвертор напряжения в работе - ярко горит энергосберегающая лампа.

А чаще всего у сельского радиолюбителя запасы радиодеталей ограничены старым советским телевизором. Вот так и появился простой инвертор напряжения, собранный из деталей, полученых из советского хлама. Имея в распоряжении аккумулятор емкостью в 7 Ампер-Часов нетрудно подсчитать на сколько времени его хватит - проверял лично.

От гелевого китайского аккумулятора эмкостью в 7 Ампер-Часов лампа горит на полной яркости в течении 6 часов, и горит практически до полного разряда аккумуляторной батареи (падение напряжения до 5.5 вольт). Схема надежно запускается и при питании от 9 Вольт. Применение в быту данной конструкции каждый найдет сам для себя.

Автор статьи и конструкции: Сэм (dimka853[собачка]rambler.ru).

Популярная электробритва "Эра" работает только на переменном токе, поэтому ею нельзя пользоваться в автомобиле. Устройство, описанное ниже, предназначено для питания этой электробритвы от автомобильной бортовой сети постоянным напряжением 12 В. Оно потребляет под нагрузкой ток около 2,5 А.

Преобразователь (рис. 4.33), содержит задающий генератор на частоту 100 Гц на триггере DD1.1, делитель частоты на 2 на триггере DD1.2, предварительный усилитель на транзисторах VT1, VT2 и усилитель мощности на транзисторах VT3, VT4, нагруженный трансформатором Т1.

Задающий генератор обладает весьма высокой стабильностью частоты (не хуже 5% при изменении питающего напряжения от 6 до 15 В). Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразователя.

Микросхема DD1 и транзисторы предварительного усилителя питаются через фильтр R9, С3, С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной частотой около 50 Гц. Микросхема К561ТМ2 может быть заменена на 564ТМ2. Вместо транзисторов КТ973Б (VT1 и VT2) можно использовать составной эмиттерный повторитель на транзисторах серий КТ361 и КТ502. Транзисторы КТ805АМ можно заменить любыми мощными аналогичной структуры. Конденсаторы C1 и С2 - КМБП, С3 - КМ-5, С4 - К50-6, С5 - МБГО на напряжение 400 В. Транзисторы VT3, VT4 следует разместить на теплоотводах, при использовании металлических транзисторов радиатор необязателен.

Трансформатор Tl можно перемотать из любого сетевого трансформатора мощностью 30...50 Вт. Все вторичные обмотки с трансформатора удаляют (сетевая будет служить обмоткой II), а вместо них наматывают проводом ПЭЛ или ПЭВ-2-1,28 мм две полуобмотки, каждая с числом витков, соответствующим коэффициенту трансформации около 20 по отношению к оставленной обмотке на 220 В.

Автор: Семьян А.П.

 

Нормальное зарядное устройство для автомобильного аккумулятора должно отдавать на выходе напряжение порядка 14,5 вольт при токе 7-10 Ампер. Оптимальный зарядный ток герметичных свинцово-гелиевых аккумуляторов составляет 10 % от общей емкости. Простое зарядное устройство состоит из силового трансформатора и выпрямителя. Трансформатор предназначен для понижения сетевых 220 вольт до нужного уровня. Однако такая конструкция получается достаточно большой и энергоемкой. В процессе зарядки аккумулятора нужно регулярно изменить напряжение для определения окончания процесса зарядки. Ниже представлена конструкция полностью автоматического зарядного устройства. Схема состоит из регулятора тока зарядки, выполненный на симисторе VS1 со схемой управления на двухбазовом транзисторе VT1 и схемы контроля заряда, а также автоматического системы отключения аккумулятора. Регулятор зарядного тока позволяет изменять ток в пределах 0-10 А.

Использованная схема не новая - впервые она пулбиковалась в журнале Радио 20 лет назад. Транзистор КТ117 найти не очень уж и просто, поэтому предлагаем также схему замены такого транзистора.

Схема контроля и автоматического выключения работает следующим образом. Тиристор VS2 в начале процесса открыт током, который протекает через R8. Со временем напряжение на нем растет. С достижением величины 14-14,3 Вольт, стабилитрон VD5 начинает пропускать ток. В это время открывается транзистор VT2, который забирает некоторую часть тока, поступающего на управляющий электрод тиристора VS2, тогда тиристор закрывается, а процесс зарядки аккумулятора останавливается.

 

 

Регулятора зарядного тока настраивают подбором резистора R2 с учетом того, чтобы при нулевом сопротивлении R1 зарядный ток был максимальным. Для настройки схемы регулятор зарядного тока сначала подключают зарядное устройство в сеть, затем подключают к нему полностью заряженный аккумулятор и с помощью R13 добиваются открывания транзистора VT2 (на коллекторе транзистора должно быть напряжение порядка 0,6... 1 В) и закрытия тиристора VS2. На этом завершена настройка зарядного устройства. Данное автоматическое зарядное устройство для автомобиля было давно собрано и успешно эксплуатируется вот уже 5 лет.

Восстановление и зарядка аккумуляторов.

 

Главная
В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя. Известен способ восстановления таких батарей при заряде их "ассимметричным" током. При этом соотношение зарядного и разрядного тока выбрано 10: 1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных. Рис.1. На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5А. При этом ток разряда будет 0,5А. Разрядный ток определяется величиной номинала резистора R4. Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4. Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8А (для импульсного зарядного тока 5А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода. В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К можно применить например типа РПУ-0 с рабочим напряжением обмотки 24В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор. Для устройства можно использовать трансформатор мощностью не менее 150Вт с напряжением во вторичной обмотке 22...25В. Измерительный прибор РА1 подойдет со шкалой 0...5А (0...3А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 см2, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства. В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис.2). Последняя буква в обозначении транзистора может быть любой. Рис.2. Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2. Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12В. Приведенные схемы пускового (рис.1) и зарядного устройств (рис.2) можно легко объединить (при этом не потребуется изолировать корпус транзистора VT1 от корпуса конструкции), для чего на пусковом трансформаторе достаточно намотать еще одну обмотку примерно 25...30 витков проводом ПЭВ-2 диаметром 1,8...2,0 мм. Эта обмотка используется для питания схемы зарядного устройства.   Материал подготовил С. Струганов (UA9XCN).

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных