![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
В средней школе изучают элементы макроскопической электродинамики — электродинамики Максвелла, уравнения которой в электродинамике играют такую же роль, как законы Ньютона в механике и начала термодинамики в термодинамике. Эти уравнения записаны для электромагнитного поля, которое характеризуется векторами напряженности электрического поля В общем случае электромагнитное поле в каждой точке описывают шестью величинами: Ех, Еу, Еz, Вх, Ву, Вz, между которыми существует взаимосвязь. Для характеристики электромагнитного поля в веществе используют еще два вектора: Особенно ярко связь электрического и магнитного полей можно показать учащимся на явлении электромагнитной индукции. Рассматривают явление электромагнитной индукции в системе отсчета, относительно которой проводник движется и относительно которой он покоится. В первом случае возникновение индукционного тока, а следовательно, и электрического поля, объясняют действием на движущиеся заряды силы Лоренца. Во втором случае в системе отсчета К заряды покоятся. В этой системе отсчета на них может действовать только электрическая сила, но это поле порождено магнитным полем (причем речь идет о постоянном магнитном поле). Связь же переменных электрических и магнитных полей бесспорна, эти поля существуют одновременно, обусловливая друг друга. Электромагнитное поле проявляется по силовому действию на электрический заряд. На движущийся заряд действует сила, обусловленная и электрической и магнитной составляющей поля: силовую характеристику электрической составляющей электромагнитного поля в данной точке. На покоящийся заряд действует только электрическая составляющая. Можно определить силовую характеристику – вектор напряженности электрического поля Вектор магнитной индукции Модуль вектора магнитной индукции Направление вектора магнитной индукции При наложении полей в обычных условиях (если не учитывать, особые случаи нелинейной оптики, когда нарушается принцип суперпозиции) они не влияют друг на друга, а действуют на заряд независимо друг от друга. Результат действия этих полей рассматривают как действие на заряд результирующего, суммарного поля, напряженность которого в любой точке равна геометрической сумме напряженностей каждого из полей: Принцип суперпозиции позволяет вычислить напряженность поля любой системы электрических зарядов. Для магнитных, как и для электрических, полей применим принцип суперпозиции. Если магнитное поле создается несколькими источниками, то вектор магнитной индукции результирующего поля в некоторой точке можно определить как геометрическую сумму векторов индукции полей, созданных отдельными источниками. Кроме силового действия электромагнитного поля на заряды, по которому определяют его характеристики, электромагнитное поле имеет и ряд других свойств (обладает определенным запасом энергии, имеет инертную и гравитационную массу и т. д.). Справедливость законов сохранения указывает на глубокое внутреннее единство вещественных объектов и полей. Эти два вида материи обладают рядом общих черт: 1) вещество и поле — два вида материи, которые реально существуют независимо от нашего сознания; 2) вещество и поле обладают энергией; 3) им присущи как волновые, так и корпускулярные свойства; 4) все процессы, происходящие в поле, подчиняются основным законам сохранения; 5) вещество и поле проницаемы друг для друга. Поле изменяет свойства вещества (поляризация, намагничивание), а вещество влияет на поле (это влияние характеризуется диэлектрической и магнитной проницаемостью). 6) возможно взаимопревращение вещества и поля (рождение пары электрон — позитрон за счет фотона и обратный процесс — электрон и позитрон, объединяясь, образуют два гамма-кванта). Но электромагнитное поле и вещество обладают и рядом свойств, которые позволяют их различать: 1) вещественные объекты друг с другом непосредственно не взаимодействуют, взаимодействие происходит по схеме: частица — поле — частица. Современная теория показывает, а эксперимент подтверждает, что при больших напряженностях возможны взаимодействия между полями; 2) поля в отличие от вещества не имеют определенной пространственной локализации, точно указать их границы невозможно; 3) один и тот же объем пространства не может быть занят одновременно различными вещественными объектами. В одном и том же объеме могут существовать несколько различных полей; 4) поле обладает значительно меньшей плотностью энергии и массы, чем вещество; 5) вещество имеет массу покоя, у фотона (квантов электромагнитного поля) масса покоя равна нулю; 6) частицы вещества могут двигаться с любой скоростью, не превышающей скорость света в вакууме, для электромагнитного поля в отсутствие сильных гравитационных полей существуют только две скорости: нулевая — для статических полей и скорость света—для свободного поля (электромагнитных волн); 7) поле, в отличие от вещества, не может служить системой отсчета, так как скорость его величина постоянная относительно движущихся и неподвижных объектов. Электромагнитное поле условно делят на свободное и связанное. Связанное — это поле, которое неразрывно связано с электрическим зарядом, а свободное — поле как бы «отрывающееся» от заряда и распространяющееся в пространстве в виде электромагнитных волн. В завершение научно-методического анализа основных понятий и вопросов раздела «Электродинамика» следует подчеркнуть, что современная электродинамика относится к тем разделам физической науки, которые являются релятивистскими. Обычно релятивистские эффекты проявляются в тех случаях, когда скорость объекта
Не нашли, что искали? Воспользуйтесь поиском:
|