Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ИЗУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ




При изучении электромагнитных колебаний школьников нужно постоянно привлекать к использованию аналогий, к экспериментальной проверке выводов по аналогии. Поскольку колебания различной природы подчиняются общим закономерностям, то аналогии используют при сопоставлении свободных колебаний в механических и электрических системах, вынужденных колебаний и резонансных явлений в этих системах и т. д.

При изучении электромагнитных колебаний обращают внимание школьников на то, какие величины в этом процессе «колеблются» (заряд конденсатора, ток в контуре, напряжение на конденсаторе и катушке, ЭДС самоиндукции), какие превращения энергии в нем происходят. Предлагают вспомнить основные признаки любой колебательной системы и задают вопросы: что считать устойчивым положением равновесия в этой системе (разряжен конденсатор, нет тока в контуре), фактором, возвращающим систему в это положение, если она была из него выведена (заряженный конденсатор создает электрическое поле, которое вызывает ток в контуре, разряжающий конденсатор), и фактором «инертности», обеспечивающим прохождение положения равновесия «по инерции» (индуктивность катушки, благодаря которой конденсатор не разряжается сразу, а перезаряжается и тем самым обеспечивается периодичность процесса).

В качестве упражнения для более основательного усвоения физической сущности электрических колебаний в контуре полезно рядом с рисунками, изображающими колебательный процесс в, контуре через каждую 1/4 периода, показать соответствующие состояния механической колебательной системы (горизонтальный и вертикальный пружинные маятники, математический маятник). Далее учащимся предлагают самим составить таблицу, показывающую аналогию между величинами в механической и электрической колебательной системах.

Затем получают формулу для периода собственных колебаний в контуре. Как известно, это можно сделать несколькими способами: используя аналогию между величинами, характеризующими механическое и электрическое колебания, или используя закон сохранения энергии для идеального колебательного контура. Возможны и иные подходы.

Находим выражение для собственной частоты и периода колебаний в контуре: и

Целесообразно провести экспериментальную проверку полученных результатов. Изменяя индуктивность катушки и электроемкость батареи конденсаторов, наблюдают изменение собственной частоты колебаний в контуре. Изменяя напряжение, подаваемое на конденсатор, наблюдают изменение амплитуды колебаний в контуре. С помощью реостата, включенного в цепь контура, можно проиллюстрировать также влияние затухания на период (частоту) и амплитуду колебаний. После того как получено уравнение гармонических колебаний в контуре

вводят (если это не было сделано ранее) понятие фазы колебания.

Следует иметь в виду, что фаза — понятие большой общности, применимое к колебаниям любой природы. Физический смысл фазы заключается в том, что она позволяет характеризовать состояние колебательной системы в любой момент времени.

Анализируя выражение показывают, что значение колеблющейся величины q в любой момент времени t определяется аргументом функции (ωt+φ0), который в этом уравнении и представляет собой фазу колебания в любой момент времени, а φ0 — начальная фаза колебания при t= 0. Зная время в секундах или долях периода, можно.

 

АВТОКОЛЕБАНИЯ

Автоколебания представляют собой незатухающие колебания в реальных колебательных системах, которые поддерживаются за счет внешнего источника энергии, причем поступление энергии регулируется самой колебательной системой. Частота и амплитуда автоколебаний определяются свойствами самой системы и не зависят от внешнего воздействия.

Изучение свободных колебаний в контуре завершает рассмотрение затухающих электрических колебаний. Выясняют причины затухания. После этого логично сделать переход к колебательным системам, в которых колебания с частотой, равной собственной частоте колебаний системы, происходят как угодно долго за счет внешнего источника энергии, т. е. к автоколебательным системам.

Вначале учащиеся вспоминают то общее, что присуще таким колебательным системам, как пружинный и нитяной маятники, колебательный контур: в них могут возникать свободные колебания, эти колебания всегда являются затухающими, в идеализированных системах они являются незатухающими, гармоническими. В этом случае их частота определяется свойствами самой системы, а амплитуда зависит от начальных условий. Эти моменты вспоминают с помощью уже известных демонстраций, которые здесь имеет смысл повторить. Демонстрируя работу маятника в часах, учащимся предлагают самим определить, какой вид колебаний имеет здесь место, назвать основные части этой колебательной системы: маятник (колебательная система), поднятая гиря (источник энергии), храповое колесо с анкерной вилкой (клапан, регулирующий поступление энергии от источника в систему). Устройство анкерного механизма, обеспечивающего поступление энергии от гири к маятнику, можно рассмотреть подробнее, если эту часть прибора показать в теневой проекции.

Вся проведенная работа ставит своей целью подготовить учащихся к рассмотрению электромагнитных автоколебаний, которые, как показывает практика преподавания, оказываются достаточно сложным для школьников материалом. Вначале рассказывают о том, что автоколебательные электромагнитные системы нашли широкое применение в радиотехнике, в частности в генераторах незатухающих электромагнитных колебаний высокой частоты.

Программа одиннадцатилетней средней школы в качестве электромагнитной автоколебательной системы предусматривает рассмотрение генератора на транзисторе.

Показывают колебательный контур, состоящий из катушки индуктивности (на 120 В) от универсального трансформатора и батареи конденсаторов Бк-58. В качестве источника энергии служит батарея напряжением 4,5 В, роль «клапана» играет транзистор, в качестве обратной связи используют катушку от универсального трансформатора (на 12 В), концы которой соединяют с базой и эмиттером транзистора. Колебательный контур включен в цепь коллектора. Катушку контура и катушку обратной связи размещают на общем магнитопроводе из того же комплекта универсального трансформатора. Напряжение с контура подают на электронный осциллограф ОЭШ.

Выделяя элементы установки и выясняя их роль в работе генератора. Изменяют электроемкость батареи и наблюдают изменение частоты колебаний генератора. Изменяют индуктивность катушки (например, медленно поднимая ее по магнитопроводу), наблюдают тот же эффект. Делают вывод: частота колебаний генератора зависит от параметров самой колебательной системы. Амплитуда колебаний также зависит от самой системы. Можно продемонстрировать эту зависимость, включив последовательно в цепь контура переменное сопротивление: амплитуда колебаний генератора уменьшится.

Объясняют, что при замыкании ключа через транзистор от источника энергии проходит импульс тока, которым заряжается конденсатор контура. В контуре при разрядке конденсатора возникают свободные затухающие колебания.

Предлагают школьникам разобраться в энергетических превращениях в демонстрируемой автоколебательной системе: чтобы колебания в контуре были незатухающими, источник напряжения должен периодически к нему подключаться, возмещая потери энергии в этом контуре. Это достигается тем, что контур индуктивно связан с участком «эмиттер — база» через катушку обратной связи.

Роль катушки обратной связи иллюстрируют на опыте: поменяв местами провода, идущие к катушке обратной связи, убеждаются в отсутствии, колебаний в контуре генератора. Восстановив прежнюю схему, можно увидеть, что генератор вновь работает. Делают вывод: пульсирующий ток в коллекторной цепи увеличивает или уменьшает силу тока в контуре в зависимости от того, в какие моменты открывается транзистор (а транзистор открывается и закрывается той переменной ЭДС, которая наводится в катушке обратной связи). Соответственно пульсации коллекторного тока либо совпадают с изменением тока в контуре (и тем самым усиливают его), либо оказываются противоположными (и ослабляют (гасят) ток в этом контуре). Поэтому генерация колебаний возможна только при определенном подключении катушки обратной связи.

Поднимая катушку обратной связи по магнитопроводу, наблюдают на осциллограмме уменьшение амплитуды колебаний. Это объясняют тем, что связь катушки становится слабее с контуром и тем самым уменьшается наводимая в ней ЭДС. Если связь станет еще слабее, колебания в контуре затухнут, так как при слабой обратной связи энергия, поступающая в контур за период, оказывается меньше потерь энергии в контуре.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных