Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Управление тиристором




Автор Белов А. В.

29.04.2008 г.

 

В данной статье приводится несколько схемных решений и описываются алгоритмы позволяющие микропроцессору управлять внешней нагрузкой при помощи тиристорных ключей.

 

Иногда необходимо, что бы микропроцессорное устройство управляло мощными электроприборами, получающими питание от сети переменного напряжения 220В. Например, нагревательными элементами, моторами, соленоидами, лампами уличного освещения и т.д. Для решения подобной задачи необходимо создать мощную схему управления, преобразующие сигналы стандартных логических уровней в сигналы управления цепями высокой мощности. Вторая проблема, которую нужно решить при создании подобных схем: это гальваническая развязка цепей микроконтроллера и управляемых им цепей 220В. Без такой развязки эксплуатация подобного устройства станет слишком небезопасной. Решение проблемы зависит от того, каким способом необходимо управлять нагрузкой. Если требуется просто ее включать и выключать, то с задачей может справиться небольшой транзисторный ключ, управляющий обмоткой электромагнитного реле. Если же нужно не просто включать и выключать, а еще и регулировать мощность, то без тиристорного ключа тут не обойтись.

Ключевые схемы

 

Рассмотрим несколько вариантов возможных решений. Один из таких вариантов приведен на рисунке 1.

 

В схеме используется даже не тиристор, а мощный симистор TC106-10. Этот симистор позволяет коммутировать нагрузку до 10 ампер. Для справки: симистор отличается от тиристора тем, что он работает с обоими полупериодами переменного напряжения, то есть, в открытом состоянии он пропускает как положительную, так и отрицательную полуволны. Для гальванической развязки цепей микроконтроллера и силовых цепей нагрузки используется оптодинистор АОУ103Б. Для того, что бы не создавать лишней нагрузки на выход микроконтроллера для управления светодиодом фотодинистора используется ключ на транзисторе КТ361. Что бы отключить нагрузку от источника питания 220В микроконтроллер должен выставить на своем выходе (в данном случае на выходе PB4 сигнал логической единицы. При этом ключ VT1 закрывается, ток через светодиод фотодинистора не течет, и симистор тоже закрыт. Когда нужно включить нагрузку, микроконтроллер устанавливает на своем выходе логический ноль. Транзистор VT1 открывается, светодиод фотодинистора зажигается и освещает динистор. Динистор начинает открываться в каждом полупериоде напряжения. Через диодный мостик, обозначенный, как VD1 динистор подключен к управляющему электроду симистора VS1. Поэтому в каждом полупериоде семистор тоже открывается и на нагрузку поступает полное напряжение питания. Диодный мостик VD1 необходим потому, что динистр может работать лишь в одном направлении. Он открывается только тогда, когда на его верхнем по схеме выводе плюс а на нижнем минус. В обратном направление динистор не открывается. Если подключить динистор к симистору напрямую, то и симистор тоже сможет пропускать лишь одну из полуволн питающего напряжения. В качестве мостика VD1 можно применить любой маломощный мостик либо составить его из четырех диодов КД522Б. Светодиод HL1 служит просто для индикации включения нагрузки.

 

 

На рисунке 2 приведен второй вариант схемы управления тиристором. Эта схема отличается от предыдущей отсутствием диодного мостика. Вместо этого в схеме используются сразу два оптосимистора U1 и U2. Светодиоды обеих фотодинисторов включены последовательно и управляются от микроконтроллера через эмиттерный повторитель на транзисторе VT1. Динисторы же включены встречно параллельно. При этом один из них работает при положительной полуволне, а второй при отрицательной. В остальном работа схемы аналогична предыдущему примеру. Отличие лишь в том, что для включения нагрузки микроконтроллер должен установить на своем выходе высокий логический уровень, а для выключения низкий. То есть, можно сказать, что схема на рис. 1 инвертирующая, а схема на рис. 2 неинвертирующая.

 

В заключении нужно сказать, что развитие элементной базы дает нам новые возможности в постороении схем управления мощной нагрузкой в сети 220В. Теперь разработчик имеет в своем распоряжении такой новый элемент, как мощный оптодинистор, который с успехом заменяет пару: тиристор-оптодинистор и позволяет построить более простые и надежные схемы. Подробнее об этом читайте в статье "Управление оптодинистором".

 

Плавная регулировка мощности

 

Если необходимо не просто включить или выключить нагрузку, а плавно регулировать ее мощность, то приведенные так же подойдут для этого. Нужно только изменить алгоритм управления. Существует два метода плавной регулировки. Мы опишем их чуть ниже. Оба метода используют синхронизацию микроконтроллера с фазой колебаний переменного напряжения сети. Для синхронизации нам необходимо сформировать и подать на микроконтроллер сигнал, по которому он сможет определять начало и конец каждого полупериода. Схема блока питания, имеющего цепи формирующие подобный сигнал приведена в статье "Схема блока питания". Сигналы "+" и "-" сформированные этими цепями необходимо подать на вход встроенного компаратора. В нашем случае это выводы 12 и 13 (AIN0, AIN1).

 

Метод фазового регулирования

Это стандартный способ управления тиристором. Состоит он в выборе момента открытия тиристора относительно начала фазы текущего полупериода питающего напряжения. Этот процесс иллюстрирует следующий рисунок:

 

 

Фазовый метод регулирования

 

На рисунке приведена форма сигнала на нагрузке при разных значениях времени задержки. Алгоритмм регулирования состоит в том, что сначала контроллер ожидает начала очередного полупериода. Обнаружив начало полупериода, контроллер запускает внутренний таймер. По окончании задержки, формируемой таймером контроллер выдает запускающий сигнал на выход, управляющий тиристорным регулятором. Тиристор открывается и напряжение поступает на нагрузку. Важно, что бы управляющее напряжение было снято с тиристора до окончания текущего полупериода. В этом случае, как только сетевое напряжение достигнет нуля, тиристор закроется а с началом следующего полупериода процесс отсчета времени повторится снова. В зависимости от выбранной длительности задержки отдаваемая в нагрузку мощность будет различной. Так при малом времени задержки (t1) мощность максимальна. При t2 в нагрузку отдается ровно половина возможной мощности, а при t3 мощность минимальна.

 

Метод исключения отдельных полупериодов

Главным недостатком предыдущего метода является большой уровень электромагнитных помех, излучаемых тиристорным ключем в процессе работы. Подобная схема будет сильно мешать рядом работающему телевизору или радиоприемнику, создавая помехи на экране и по звуку. Большой уровень помех обусловлен тем, что включение тиристора происходит в момент, когда мгновенное значение сетевого напряжения находится вблизи его амплитуды. Крутые фронты достаточно большого уровня напряжения и создают большое количество помех. Выходом является второй метод регулирования. Он состоит в том, что включение тиристора всегда происходит в самом начале полупериода, когда напряжение переходит через ноль и, если полупериод пропускается в нагрузку, то весь полностью. Регулировка же мощности производится путем исключения отдельных полупериодов. Этот процесс показан на следующем рисунке:

 

 

Метод исключения полупериода

 

На рисунке мы видим, что все полупериоды с первого по пятый тиристор беспрепятственно открывается. Затем, во время прохождения шестого полупериода сигнал управления с тиристора снимается и напряжение на выход не поступает. В начале седьмого полупериода сигнал управления опять включается. Для реализации подобного метода разрабатываются целые схемы исключения полупериодов. Например, берется последовательность из десяти полупериодов. Для того, что бы получить мощность в 50%, пять полупериодов пропускают в нагрузку, а остальные пять не пропускают. Затем все повторяется, каждые 10 полупериодов. Причем не обязательно исключать полупериоды подряд. Можно разбросать включенные полупериоды по всему этому отрезку. Для получения 10% мощности из 10 придется оставить только один полупериод. А для 70% нужно оставить 7 а исключить три. Ну и так далее...

 

Недостатком такого способа является то, что подобным образом затруднительно регулировать мощность свечения электрической лампы. Лампа будет заметно мерцать. Но для регулировки мощности нагревательного элемента этот способ является самым оптимальным.

 

Последнее обновление (30.04.2008 г.)

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных