Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И МОЛОДЕЖНОЙ ПОЛИТИКИ ХМАО-ЮГРЫ

Бюджетное учреждение профессионального образования ХМАО-ЮГРЫ «Когалымский политехнический колледж»

 

КУРСОВАЯ РАБОТА

по дисциплине:

Технология добычи нефти и газа

на тему:

Физико-химические свойства нефти,

нефтяного газа и пластовой воды

 

 

 

Выполнил: студент группы РН-14з Серёгина О.Н.   Проверил: преподаватель Мансурова Алсу Богдатовна  

г. Когалым, 2016

Содержание

 

  Введение…………………………………………………………….  
1. Свойства нефти.…………………………………………………….  
1.1. Физические свойства нефти……………………………………….  
1.2. Химические свойства нефти………………………………………..  
2. Свойства нефтяного газа……………………………………………  
2.1. Физические свойства нефтяного газа……………………………...  
2.2. Химические свойства нефтяного газа…………………..…………  
3. Свойства пластовой воды…………………………………………..  
3.1. Физические свойства пластовой воды…………………………….  
3.2. Химический состав пластовой воды……………………………….  
  Заключение………………………………………………………….  
  Список использованной литературы………………………………  

 

 

Введение

 

С развитием техники повышаются требования к ассортименту и ка­честву нефтей и нефтепродуктов, что, в свою очередь, требует совершен­ствования процессов их производства. Поэтому качества, как товарной нефти, так и продуктов ее переработки, подлежат обязательному контро­лю. Организацию контроля качества невозможно осуществлять без стан­дартов на нефтепродукты и методов их испытания. Задачи стандартизации многообразны. Это и удовлетворение более высоких требований к выпус­каемой продукции технологии транспорта, защита интересов потребителя, также и интересов изготовителя — от необоснованных претензии.

Соблюдение государственных стандартов обязательно для всех предприятий и организаций, причастных к транспорту и хранению нефтей и нефтепродуктов, тогда как другие имеют ограниченную сферу влияния.

К физико-химическим относятся свойства, характеризующие со­стояние нефти и нефтепродуктов и их состав (например, плотность, вяз­кость, фракционный состав). Эксплуатационные свойства характеризуют полезный эффект от использования нефтепродукта по назначению, опре­деляют область его применения. Некоторые эксплуатационные свойства нефтепродуктов оценивают с помощью нескольких более простых физико-химических свойств. В свою очередь, перечисленные физико-химические свойства можно определить через ряд более простых свойств веществ. Часто на практике нефтепродукты и нефти характеризуются уровнем каче­ства. Оптимальным уровнем считается такой, при котором достигается наиболее полное удовлетворение требований потребителя. Уровень каче­ства зависит от уровня каждого свойства и значимости этого свойства. Количественную характеристику одного или нескольких свойств продукции, составляющих его качество, следует называть показателем качества.

 

 

1. Свойства нефти.

 

1.1. Физические свойства нефти.

Нефть – горючая маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов.

Цвет нефти варьирует от светло-коричневого до темно-бурого и черного.

1.1.1. Плотность.

Плотность ρ – отношение массы к объему. Единица измерения плотности в системе СИ выражается в кг/м3. Измеряется плотность ареометром. Ареометр – прибор для определения плотности жидкости по глубине погружения поплавка (трубка с делениями и грузом внизу). На шкале ареометра нанесены деления, показывающие плотность исследуемой нефти (рис. 1.1).


Рис. 1.1 Ареометр.

 

Плотность нефти варьируется от 730 до 980÷1050 кг/м3 (плотность менее 800 кг/м3 имеют газовые конденсаты). По плотности нефти делятся на 3 группы (рис. 1.2).

 

Рис. 1.2 Классификация нефти по плотности.

 

По плотности судят о качестве нефти. Легкие нефти наиболее ценные.

1.1.2. Вязкость.

Вязкость – свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других. Она зависит от силы взаимодействия между молекулами жидкости. Для характеристики этих сил используется коэффициент динамической вязкости µ. За единицу динамической вязкости принят паскаль-секунда (Па·с), т. е. вязкость такой жидкости, в которой на 1 м2 поверхности слоя действует сила, равная одному ньютону, если скорость между слоями на расстоянии 1 см изменяется на 1 см/с. Жидкость с вязкостью 1 Па·с относится к числу высоковязких.

В нефтяном деле, так же как и в гидрогеологии и ряде других областей науки и техники, для удобства принято пользоваться единицей вязкости в 1000 раз меньшей – мПа·с. Так, пресная вода при температуре 200С имеет вязкость 1 мПа· с, а большинство нефтей, добываемых в России, – от 1 до 10 мПа·с, но встречаются нефти с вязкостью менее 1 мПа·с и несколько тысяч мПа·с. С увеличением содержания в нефти растворенного газа, ее вязкость заметно уменьшается. Для большинства нефтей, добываемых в России, вязкость при полном выделении из них газа (при постоянной температуре) увеличивается в 2÷4 раза, а с повышением температуры резко уменьшается.

Вязкость жидкости характеризуется также коэффициентом кинематической вязкости, т. е. отношением динамической вязкости к плотности жидкости. За единицу в этом случае принят м2/с.

На практике иногда пользуются понятием условной вязкости, представляющей собой отношение времени истечения из вискозиметра определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при температуре 200С.

Вязкость изменяется в широких пределах (при 500С 1,2÷55·10-6 м2/с) и зависит от химического и фракционного состава нефти и смолистости (содержания в ней асфальтеново-смолистых веществ).

1.1.3. Испаряемость.

Нефть теряет легкие фракции, поэтому она должна храниться в герметичных сосудах.

В пластовых условиях свойства нефти существенно отличаются от атмосферных условий.

Движение нефти в пласте зависит от пластовых условий: высокие давления, повышенные температуры, наличие растворенного газа в нефти и др. Наиболее характерной чертой пластовой нефти является содержание в ней значительного количества растворенного газа, который при снижении пластового давления выделяется из нефти (нефть становится более вязкой и уменьшается ее объем).

В пластовых условиях изменяется плотность нефти, она всегда меньше плотности нефти на поверхности.

1.1.4. Сжимаемость.

Сжимаемость – способность нефти (газа, пластовой воды) изменять свой объем под действием давления. При увеличении давления нефть сжимается. Для пластовых нефтей коэффициенты сжимаемости β нефти колеблются в пределах 0,4 14,0 ГПа-1, коэффициент β определяют пересчетом по формулам, более точно получают его путем лабораторного анализа пластовой пробы нефти.

Из-за наличия растворенного газа в пластовой нефти, она увеличивается в объеме (иногда на 50÷60 %). Отношение объема жидкости в пластовых условиях к объему ее в стандартных условиях называют объемным коэффициентом . Величина, обратная объемному коэффициенту, называется пересчетным коэффициентом

.

Этот коэффициент служит для приведения объема пластовой нефти к объему нефти при стандартных условиях.

Используя объемный коэффициент, можно определить усадку нефти И, т. е. на сколько изменяется ее объем на поверхности по сравнению с глубинными условиями:

%.

1.1.5. Газосодержание.

Газосодержание – важная характеристика нефти в пластовых условиях. Это количество газа, содержащееся в одном кубическом метре нефти.

1.1.6. Газовый фактор.

Газовый фактор – отношение полученного из месторождения через скважину количества газа (в м3), приведённого к атмосферному давлению и температуре 200С, к количеству добытой за то же время нефти (в т или м3) при том же давлении и температуре; показатель расхода пластовой энергии и определения газовых ресурсов месторождения. Для нефтяных месторождений России газовый фактор изменяется от 20 до 1000 м3/т. По закону Генри, растворимость газа в жидкости при данной температуре прямо пропорциональна давлению. Давление, при котором газ находится в термодинамическом равновесии с нефтью, называется давлением насыщения. Если давление ниже давления насыщения, из нефти начинает выделяться растворенный в ней газ. Нефти и пластовые воды с давлением насыщения, равным пластовому, называются насыщенными. Нефти в присутствии газовой шапки, как правило, насыщенные.

 

1.2. Химические свойства нефти.

 


Рис. 1.3 Химический состав нефти.

 

Различают элементный, фракционный и групповой составы нефти.

Элементный состав. Основными элементами нефти являются углерод и водород. В среднем в состав нефти входит 86 % углерода и 13 % водорода. Большой интерес для промысловой практики представляют другие классы органических соединений, на присутствие которых указывает содержание в нефти кислорода, азота, серы и других элементов. Их количество в составе нефтей незначительно. Однако кислород и сера могут существенно влиять на свойства поверхностей раздела в пласте, на распределение жидкостей и газов в поровом пространстве и, следовательно, на закономерности движения жидкостей и газов. С этими веществами также связаны процессы, имеющие важное промысловое значение, – коррозия, образование и разрушение нефтяных эмульсий, выделение из нефти и отложение парафина в поровых каналах пласта, в скважинах, в промысловом оборудовании.

Наиболее часто встречающаяся примесь – сера (до 7 %), хотя во многих нефтях серы практически нет. Сера содержится как в чистом виде, так и в виде сероводорода и меркаптанов. Она усиливает коррозию металлов.

Согласно ГОСТ Р 51858-2002 «Нефть. Общие технические условия» по массовой доле общей серы нефть подразделяется на классы:

малосернистая – не более 0,60 %;
сернистая – 0,61÷1,80 %;
высокосернистая – 1,81÷3,50 %
особо высокосернистая – более 3,50 %.

 

Азота в нефтях содержится не более 1,7 %. Он обычно безвреден благодаря свой инертности.

Кислород встречается не в чистом виде, а в различных соединениях (кислоты, фенолы, эфиры и т. д.). Его в нефти не более 3,6 %.

Из металлов в нефти присутствует железо, магний, алюминий, медь, натрий, олово, кобальт, хром, германий, ванадий, никель, ртуть и др. Содержание металлов очень мало, их обнаруживают лишь в золе, оставшейся после сжигания нефти.

Групповой состав. Под групповым составом нефти понимают количественное соотношение в ней отдельных групп углеводородов и других соединений.

Нефть представляет собой смесь углеводородов метанового – алканы, нафтенового – циклоалканы и ароматического – арены рядов, причем преобладают чаще углеводороды метанового или нафтенового рядов.

Алканы насыщенны, предельны, химически малоактивны. Химическая формула CnН2n+2 (n – число атомов углерода). При стандартных условиях (давление 0,1 МПа и температура 20°С):

С1÷С4 – газы;

С5÷Сi7 – жидкости;

при n>17 – твердые вещества. Сig÷Сs – истинные парафины (кристаллы имеют рыхлую структуру), С36÷С72 – церезины (кристаллическое, игольчатое строение, легко выносятся с потоком нефти).

Классификация нефти по содержанию парафинов:

малопарафиновая – менее 1,5 %;
парафиновая – 1,5÷6,0 %;
высокопарафиновая – более 6,0 %.

 

Циклоалканысостоят из нескольких метиленовых групп СН2 с двумя валентностями, которые соединены в кольцо или цикл. Могут присоединять к себе объединенные кольца и цепочки метанового строения (циклопропан, циклобутан, циклопентан и т.д.). Химическая формула циклоалканов CпН2п.

Ареныимеют также циклическое строение, объединяющие радикалы СН. Трехвалентны. В ароматическом кольце соединение происходит через одно не одинарными, а двойными связями. Поэтому они ненасыщенные и непредельные, но из-за циклического строения химически малоактивны. Химическая формула аренов – CnH2n.m (здесь m – четные цифры от 6 и выше).

Кроме групп углеводородов в нефти содержатся кислородные, сернистые и азотистые соединения.

К кислородным соединениямотносятся нафтеновые кислоты, вызывающие коррозию, и асфальтосмолистые вещества (АСВ).

АСВ – это сложные высокомолекулярные органические соединения, содержащие кроме углерода и водорода кислород (до 2 %), серу (до 7 %) и азот (до 1 %). Содержание АСВ в нефти может достигать 40 %. При обычных температурах они представляют собой малотекучее или твердое вещество с плотностью, превышающую плотность воды. Часть АСВ, растворимая в бензине, относится к смолам, а нерастворимая – к асфальтам (асфальтенам).

Фракционный состав нефти определяется при разделении сложной смеси соединений по температуре кипения. Фракцией (дистиллятом) называется доля нефти, выкипающая в определенном интервале температур.

Началом кипения фракции считают температуру падения первой капли сконденсировавшихся паров. Концом кипения фракции считают температуру, при которой испарение фракции прекращается.

На практике используют стандартный метод фракционной разгонки, при котором нефть разгоняют на стандартные температурные фракции. При заводской перегонке нефти, как правило, отбираются фракции, имеющие следующие температурные интервалы кипения:

авиационный бензин – 40÷1800С;
автомобильный бензин – 40÷2050С;
керосин – 200÷3000С;
лигроин – 270÷3500С.

Все остальные высококипящие фракции относятся к масляным.

 

2. Свойства нефтяного газа.

 

Природные углеводородные газы находятся в недрах земли или в виде самостоятельных залежей, образуя чисто газовые месторождения, либо в растворенном виде содержится в нефтяных залежах. Такие газы называются нефтяными или попутными, так как их добывают попутно с нефтью.

2.1. Физические свойства нефтяного газа.

2.1.1. Плотность.

Плотность газов существенно зависит от давления и температуры. Она может измеряться в абсолютных единицах (г/см3, кг/м3) и в относительных. При давлении 0,1 МПа и температуре 0 плотность газов примерно в 1000 раз меньше плотности жидкости и изменяется для углеводородных газов от 0,7 до 1,5 кг/м3(в зависимости от содержания в газе легких и тяжелых углеводородов).

Относительной плотностью газа называют отношение плотности газа при атмосферном давлении (0,1 МПа) и стандартной температуре (обычно 0 ) к плотности воздуха при тех же значениях давления и температуры. Для углеводородных газов относительная плотность по воздуху изменяется в пределах 0,6÷1,1.

2.1.2. Растворимость.

Растворимость углеводородных газов в жидкости при неизменной температуре определяют по формуле

,

где – объем газа, растворенного в единице объема жидкости, приведенной к стандартным условиям;

– давление газа над жидкостью,

– коэффициент растворимости газа в жидкости, характеризующий объем газа (приведенный к стандартным условиям), растворенный в единице объема жидкости при увеличении давления на 1МПа;

– показатель, характеризующий степень отклонения растворимости реального газа от идеального.

Значение и зависят от состава газа и жидкости.

Коэффициент растворимости для нефтей и газов основных месторождений России изменяется в пределах 5÷11 м33 на 1МПа. Показатель изменяется в пределах 0,8÷0,95.

На многих месторождениях природный газ первоначально существует в растворенном состоянии в нефти и выделяется из раствора только при снижении давления. Чем больше снижается давление, тем больше выделяется газа из раствора.

2.1.3. Вязкость.

Вязкость нефтяного газа при давлении 0,1 МПа и температуре 0 обычно не превышает 0,01 мПа·с. С повышением давления и температуры она незначительно увеличивается. Однако при давлениях выше 3 МПа увеличение температуры вызывает понижение вязкости газа, причем газы, содержащие более тяжелые углеводороды, как правило, имеют большую вязкость.

2.1.4. Теплоемкость.

Теплоемкость газа – количество тепла, необходимое для нагревания единицы веса или объема этого вещества на 10С. Весовая теплоемкость газа измеряется в кДж/кг, а объемная – в кДж/м3.

2.1.5. Теплота сгорания.

Теплота сгорания газа какого-либо вещества определяется количеством тепла, выделяющимся при сжигании единицы веса или единицы объема данного вещества. Теплота сгорания газов выражается в кДж/кг и кДж/м3и является основным показателем, характеризующим газ или топливо.

Если при постоянной температуре повышать давление какого-либо газа, то после достижения определенного значения давления этот газ сконденсируется, т. е. перейдет в жидкость. Для каждого газа существует определенная предельная температура, выше которой ни при каком давлении газ нельзя перевести в жидкое состояние. Наибольшая температура, при которой газ не переходит в жидкое состояние, как бы велико ни было давление, называется критической температурой.

Давление, соответствующее критической температуре, называется критическим давлением. Таким образом, критическое давление – это предельное давление, при котором и менее которого газ не переходит в жидкое состояние, как бы ни низка была температура. Так, например, критическое давление для метана приблизительно равно 4,7 МПа, а критическая температура – 82,50С.

2.1.6. Взрываемость.

Природные газы могут воспламеняться или взрываться, если они смешаны в определенных соотношениях с воздухом и нагреты до температуры их воспламенения при наличии открытого огня.

Минимальные и максимальные содержания газа в газовоздушных смесях, при которых может произойти их воспламенение, называются верхним и нижним пределом взрываемости. Для метана эти пределы составляют от 5 до 15 %. Эта смесь называется гремучей и давление при взрыве достигает 0,8 МПа.

2.2. Химические свойства нефтяного газа.

Углеводородные газы нефтяных и газовых месторождений представляют собой газовые смеси, состоящие главным образом из предельных углеводородов метанового ряда СnН2n+2, т. е. из метана СН4 и его гомологов – этана С2Н6, пропана С3Н8, бутана С4Н10 и других. Газы нефтяных месторождений наиболее тяжелые, метана в них от 30 до 70 %.

Кроме углеводородных газов, газы нефтяных и газовых месторождений содержат углекислый газ, азот, а в ряде случаев сероводород и в небольших количествах редкий газ, такой как гелий, аргон и др.

 

 

3. Свойства пластовой воды.

 

Пластовые воды являются обычным спутником нефти.

Вода обладает способностью смачивать породу и потому она обволакивает тончайшей пленкой отдельные зерна ее, а также занимает наиболее мелкие поровые пространства. Вода, залегающая в одном и том же пласте вместе с нефтью или газом, называется пластовой. В нефтегазоносных залежах распределение жидкостей и газов соответствует их плотностям: верхнюю часть пласта занимает свободный газ, ниже залегает нефть, которая подпирается пластовой водой. Однако пластовая вода в нефтяных и газовых залежах может находиться не только в чисто водяной зоне, но и в нефтяной и газовой, насыщая вместе с нефтью и газом продуктивные породы залежей. Эту воду называют связанной или погребенной.

Осадочные породы, являющиеся нефтяными коллекторами, формировались, в основном, в водных бассейнах. Поэтому еще до проникновения в них нефти поровое пространство между зернами породы было заполнено водой. В процессе тектонических вертикальных перемещений горных пород (коллекторов нефти и газа) и позднее углеводороды мигрировали в повышенные части пластов, где происходило распределение жидкостей и газов в зависимости от плотности. При этом вода вытеснялась нефтью и газом не полностью, так как основные минералы, входящие в состав нефтесодержащих пород, гидрофильные, т. е. лучше смачиваются водой, чем нефтью. Поэтому вода при вытеснении ее нефтью в процессе образования нефтяных залежей частично удерживалась в пластах в виде тончайших пленок на поверхности зерен песка или кальцита и в виде мельчайших капелек в точках контакта между отдельными зернами и в субкапиллярных каналах. Эта вода находится под действием капиллярных сил, которые значительно превосходят наибольшие перепады давлений, возникающие в пласте при его эксплуатации, и поэтому остается неподвижной при разработке нефтегазовой залежи.

3.1. Физические свойства пластовой воды.

3.1.1. Минерализация.

Минерализация воды характеризуется количеством растворенных в ней минеральных солей. Степень минерализации вод часто выражается их соленостью, т. е. содержанием растворенных в воде солей, отнесенных к 100 г раствора.

Пластовые воды обычно сильно минерализованы. Степень их минерализации колеблется от нескольких сот граммов на 1 м3 в пресной воде до 80 кг/м3 в сильноминерализованных водах и до 300 кг/м3 – в рапах.

Воды нефтяных месторождений делятся на два основных типа: жесткие и щелочные.

На практике для классификации вод принимают классификацию Пальмера, который рассматривает воду как раствор солей. Каждая соль, растворяясь в воде, придает ей определенные свойства. Например, раствор поваренной соли делает воду нейтральной. Жесткость придают воде сульфаты кальция и магния, образующие "вторичную соленость".

3.1.2. Плотность.

Плотность воды зависит от степени ее минерализации и от температуры и составляет примерно от 1010 до 1080 кг/м3 и более.

3.1.3. Сжимаемость.

Коэффициент сжимаемости воды, т. е. изменение единицы объема ее при изменении давления на 0,1 МПа в пластовых условиях, находится в пределах 3,7·10-5÷5·10-5/0,1 МПа в зависимости от температуры и абсолютного давления. Содержание в воде растворенного газа повышает ее сжимаемость.

3.1.4. Растворимость.

Растворимость газов в воде значительно ниже растворимости их в нефтях. Рост минерализации воды способствует уменьшению растворимости в ней газа.

3.1.5. Электропроводность.

Электропроводность находится в прямой зависимости от минерализации вод. Пластовые воды являются электролитом.

3.1.6. Вязкость.

Вязкость пластовой воды при 200С составляет 1мПа·с, а при 1000С – 0,284 мПа·с.

3.2. Химический состав пластовой воды.

В состав вод нефтяных месторождений входят, главным образом, хлориды, бикарбонаты и карбонаты металлов натрия, кальция, калия и магния. Содержание хлористого натрия может доходить до 90 % от общего содержания солей. Иногда встречается сероводород и в виде коллоидов окислы железа, алюминия и кремния. Часто присутствует йод и бром, иногда в таком количестве, что вода может быть объектом их промышленной добычи.

Воды нефтяных месторождений отличаются от поверхностных или отсутствием сульфатов (соединений SO4), или их слабой концентрацией. Помимо минеральных веществ, в водах нефтяных месторождений содержатся некоторые минеральные вещества, углекислота, легкие углеводороды, нафтеновые и некоторые жирные кислоты.

Воды нефтяных месторождений могут содержать бактерии органических веществ, которые придают различную окраску (розовую, красную, молочную).

Отношение объема воды, содержащейся в породе, к объему пор этой же породы называется коэффициентом водонасыщенности

,

где – коэффициент водонасыщенности; – объем воды в породе; – объем пор.

Отношение объема нефти, содержащейся в породе, к общему объему пор называется коэффициентом нефтенасыщенности

,

где – коэффициент нефтенасыщенности; – объем нефти в породе; – объем пор.

Содержание связанной воды в породах нефтяных залежей колеблется от долей процента до 70 % объема пор и в большинстве коллекторов составляет 20÷30 % этого объема.

Исследованиями установлено, что при содержании в пласте воды до 35÷40 % и небольшой проницаемости пород пласта из скважин может добываться безводная нефть, так как связанная вода в этом случае в пласте не перемещается.

 

Заключение

Отсутствие хорошо разработанной теории жидкого состояния препятствует развитию теоретических методов расчета вязкости жидкости. Поэтому в инженерных расчетах большое распространение получили различные лабораторные и эмпирические методы вычисления вязкости чистых веществ и их смесей.

Нефть (и газ) останутся в ближайшем будущем основой обеспечения энергией народного хозяйства и сырьем нефтегазохимической промышленности. Здесь будет многое зависеть от успехов в области поисков, разведки и разработки нефтяных (и газовых) месторождений. Но ресурсы нефти (и газа) в природе ограничены. Бурное наращивание в течение последних десятилетий их добычи привело к относительному истощению наиболее крупных и благоприятно расположенных месторождений.

В проблеме рационального использования нефти и газа большое значение имеет повышение коэффициента их полезного использования. Одно из основных направлений здесь предполагает углубление уровня переработки нефти в целях обеспечения потребности страны в светлых нефтепродуктах и нефтехимическом сырье.

Другим эффективным направлением является снижение удельного расхода топлива на производство тепловой и электрической энергии, а также повсеместное снижение удельного расхода электрической и тепловой энергии во всех сферах народного хозяйства.

 

 

Список использованной литературы:

1. Хазнаферов А.И. «Исследование пластовых нефтей» под ред. В.Н. Мамуны. – М.:, Недра, 1987. – 116 с;

2. Мордвинов А.А. «Теоретические основы добычи нефти и газа для операторов»: учеб. пособие: в 3 ч.; ч. 1 / А.А. Мордвинов, О.М. Корохонько. - Ухта: УГТУ, 2006. 159 с;

3. Вержичинская С.В., Дигуров Н.Г., Синицин С.А. «Химия и технология нефти и газа». Учебное пособие. — М.: ФОРУМ: ИНФРА-М, 2007. – 400 с: ил. – (Профессиональное образование);

4. Коршак А.А., Шаммазов А.М. «Основы нефтегазового дела». / Учебник для вузов. – 3-е изд., испр. и доп. – Уфа.: ООО «ДизайнПолиграфСервис», 2005. – 528 с.

5. Судо М.М. «Нефть и горючие газы в современном мире». – М.: Недра, 1984.

 

 

<== предыдущая лекция | следующая лекция ==>
ОЦЕНКА РЕЗУЛЬТАТОВ НАУЧНОЙ РАБОТЫ УЧЕНЫХ БГИИК | БИБЛИОГРАФИЧЕСКИЙ СПИСОК. об учебной (ознакомительной) практике


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных