Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Потери в переходных режимах




Как было показано ранее переходные процессы при быстрых изменениях воздействующего фактора могут сопровождаться большими бросками момента и тока, т.е. значительными потерями энергии.

 

Потери в переходных процессах при пуске вхолостую

Потери энергии в якорной или роторной цепи за переходный процесс вхолостую (Мс = 0) при «мгновенном» появлении новой характеристики зависят только от запаса кинетической энергии в роторе при w0 и от начального и конечного скольжений.

 

Режим работы s нач s кон Потери
Пуск    
Динамическое торможение    
Торможение противовключением    
Реверс     4

 

При пуске и динамическом торможении они составят при торможении противовключением , при реверсе Ни форма механической характеристики, ни время переходного процесса, ни какие-либо параметры двигателя, кроме J и w0, не влияют на потери в роторе.

Если в асинхронном двигателе пренебречь током намагничивания и считать, что то Тогда а общие потери энергии в асинхронном двигателе при этих условиях составят

Переходный процесс – очень напряженный в энергетическом отношении режим: потери энергии в десятки раз выше, чем за то же время в установившемся режиме.

Для того чтобы оценить потери энергии в переходном процессе под нагрузкой Мс ¹ 0 (другие условия сохраняются), примем, что Мс = const и М = Мср = const, – этот случай был детально рассмотрен в п. 5.2; для пуска графики w(М) и w(t) показаны на рисТогда Р1 = Мср w0, Р2 = Мср w, D Р = Р1 – Р2 (рис. 6.4), а потери энергии определяется в соответствии с (6.10)

заштрихованным треугольником, т.е.

или с учетом tпп = J w0/(Мср – Мс)

.

Механические характеристики и потери энергии при пуске

 

При торможении нагрузка будет снижать потери:

Из изложенного следуют возможные способы снижения потерь энергии в переходных процессах:

- уменьшение момента инерции за счет выбора соответствующего двигателя и редуктора или за счет замены одного двигателя двумя половинной мощности;

- замены торможения противовключением динамическим торможением или использование механического тормоза;

- переход от скачкообразного изменения w0 к ступенчатому; при удвоении числа ступеней будет вдвое сокращаться площадь треугольников, выражающих потери энергии;

- плавное изменение w0 в переходном процессе.

Рассмотрим подробнее последний способ, реализуемый практически в системах управляемый преобразователь – двигатель.

При плавном изменении w0 в переходном процессе, как это было показано в п. 5.3, должны уменьшаться потери энергии. Это иллюстрируется на рис. 6.5, где сравниваются два случая – прямой пуск вхолостую (а) и частотный пуск вхолостую за время t1 >> Tм, т.е. при ускорении (б) – заштрихованные площади.

При прямом пуске, как уже отмечалось, потери энергии в якорной или роторной цепи определяется площадью заштрихованного треугольника на рис. 6.5,а и составят

 

При плавном пуске потери определятся площадью заштрихованной на рис. 6.5,б трапеции:

Где – электромеханическая постоянная времени

Отметим, что выражение (6.16), полученное при аппроксимации реальной кривой скорости (см. п. 5.3) прямой линией справедливо лишь при t1 >> Tм; при иных условиях следует использовать более точные модели.

Из изложенного следует, что уменьшая e, т.е. увеличивая время переходного процесса и снижая момент, можно управлять потерями энергии, снижая их до любой требуемой величины.

а) б)

Потери при прямом (а) и плавном (б) пуске

 

 

ВЫБОР ДВИГАТЕЛЯ

 

 

Расчет автоматизированного электропривода связан, прежде всего, с расчетом мощности электродвигателя.

От правильного выбора электродвигателя по мощности зависят надежность его работы в электроприводе и энергетические показатели в процессе эксплуатации. Следует отметить, что электродвигатель является важнейшей и часто наиболее дорогостоящей составляющей системы электропривода. В тех случаях, когда нагрузка двигателя существенно меньше номинальной, он недоиспользуется по мощности, что свидетельствует об излишних капитальных вложениях, его КПД и коэффициент мощности заметно снижаются.

Если нагрузка превышает номинальную, это приводит к увеличению токов и потерь мощности выше соответствующих номинальных значений, вследствие чего температура (превышение температуры) обмоток и магнитопровода двигателя может превысить допустимое значение. Рост температуры выше заданных значений приводит к резкому ускорению старения изоляции вследствие изменения ее физико-химических свойств и соответственно уменьшению срока службы и надежности двигателя в целом, поэтому одним из основных критериев выбора двигателя по мощности является температура (превышение температуры) обмоток

 

 

 

 

Расчет статической мощности электроприводов малоизученных механизмов производится по эмпирическим формулам, полученным на основании экспериментальных данных.

 

 

 

Мощность выбранного электродвигателя должна удовлетворять следующим условиям:

· Нагрев электродвигателя в процессе работы не должен превышать допустимый;

· Перегрузочная способность электродвигателя должна позволять двигателю преодолевать кратковременные перегрузки;

· Пусковой момент электродвигателя должен обеспечивать надежный разгон механизма при наибольшей расчетной нагрузке на валу и допустимом снижении питающего напряжения

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных