ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Основные классификационные параметры ЗУ
Таблица 17.2 Статические параметры ЗУ
При использовании такого накопителя приходится решать две задачи: • выбор конкретной ячейки накопителя, в которую будет записана или из • что нужно сделать — записать или прочитать информацию в ячейке. задача решается переводом ячейки памяти в режим записи или считывания по сигналу на входе схемы управления. Накопитель или матрица памяти состоит из п строк. В состав каждой строки входят m запоминающих ячеек, образующих m-разрядное слово. Информационная емкость накопителя равна N=nm, где л — число строк (или слов), т — число столбцов (или разрядов). Соответствующие шины в накопителе управляются от дешифраторов строк (X) истолбцов (Y), на входы которых поступают адресные сигналы Такая матрица запоминающих ячеек (ЗЯ) может работать в двух режимах: пословном и двухкоординатном. Структура пословной матрицы приведена на рис. 17.2 а. Как видно из схемы, адресные шины Х0...
При работе матрицы ЗЯ в двухкоординатном режиме с помощью шин строк и столбцов выбирается любая ячейка матрицы. В этом случае разрядная шина Р, которая является общей для всех ЗЯ, используется как для записи, так и для считывания информации в адресованных ЗЯ. Простейшей ЗЯ является схема RS -триггера, построенная на двух многоэмиттерных биполярных транзисторах VTI и VT2, изображенная на рис. 17.3 а. Первые эмиттеры обоих транзисторов соединены с адресной шиной В режиме хранения информации выполняется условие В режиме считывания с помощью адресного сигнала Условия режима записи зависят от состояния, в которое необходимо установить ЗЯ. Если триггер находился в состоянии 1 (транзистор VT2 открыт, транзистор VT1 — закрыт), то для записи 0 необходимо по разрядной шине
Запоминающая ячейка на RS -триггере, выполненном на p -канальных МОП В исходном состоянии напряжения на разрядных шинах Для записи логической 1 в ЗЯ на шину слова подается отрицательный сигнал, изменяющий напряжение в ней до нуля. Одновременно в разрядную шину Для записи логического нуля в ЗЯ на шине слова устанавливается нулевое напряжение, а напряжение питания подается на разрядную шину Y0. При этом транзистор VT6 открывается и положительное напряжение через него подается на затвор VT1, запирая его, что приводит к отпиранию транзистора VT3. Для считывания информации, записанной в ЗЯ, нужно подать отрицательный сигнал только на шину слова, изменив в ней напряжение до нуля. При этом оба транзистора VT5 и VT6 открываются и через транзистор, подключенный к триггеру е положительным напряжением, протекает ток, поступающий в соответствующую разрядную шину. Устройство управления определяет режим работы схемы ОЗУ. По сигналу
Данные, подлежащие записи, поступают на вход D1, а данные, подлежащие чтению, снимаются с выхода DO. Устройства записи и считывания обеспечивают прием и выдачу сигналов информации с уровнями, согласующимися с серийными цифровыми микросхемами. По режиму питания статические ОЗУ можно разделить на группы с активным и активно-пассивным режимами питания. При активном режиме питания накопитель и схема управления потребляют практически одинаковую мощность при всех операциях: записи, считывания и хранения информации. При активно-пассивном режиме питания некоторые узлы переходят в режим малого потребления или полностью отключаются, если микросхема находится в режиме хранения информации. В результате при хранении информации потребляемая микросхемой мощность уменьшается. При переходе в режим записи или считывания напряжения и токи питания восстанавливаются до номинальных значений. Использование активно-пассивного режима питания в несколько раз уменьшает среднюю мощность, потребляемую микросхемой. По этой причине большинство микросхем ОЗУ используют такой режим. Динамические ОЗУ. Для увеличения информационной емкости широко используются динамические ОЗУ, в которых информация хранится в виде заряда соответствующих емкостей. При токе утечки обратно смещенного p-n -переходаоколо 10-10А и емкости хранения 0,1 пФ время хранения не превышает 1мс. В связи с этим необходимо восстановление (регенерация)хранимой информации с периодом не более 1мс. Емкостные ячейки памяти выполняются или на биполярных, или на МОП транзисторах. Для динамических ОЗУ характерны некоторые особенности, которые существенно отличают их от статических: динамические ЗЯ не требуют источника питания; для выполнения регенерации заряда необходимы соответствующие блоки; малая потребляемая мощность; для управления динамическим ОЗУ необходимы последовательности импульсов, которые обычно формируются специальными генераторами. По способу регенерации микросхемы динамических ОЗУ делятся на адресные и безадресные. При адресной регенерации производится перебор регенерируемых ячеек с тем, чтобы за период регенерации восстановить заряды во всех ячейках. При безадресной регенерации заряды восстанавливаются во всех ячейках при помощи специальных тактовых импульсов. Отличительной особенностью микросхем динамических ОЗУ является их адресация. Схемы динамических ОЗУ отличаются от схем статических ОЗУ использованием последовательной адресации. Вначале на адресный вход подается строб адреса строки RAS, а затем строб адреса столбца CAS. Для этих стробов имеются специальные выводы микросхемы, которые показаны на структурной схеме рис. 17.1 Адресные сигналы поступают в регистры-фиксаторы, а затем на дешифраторы адресов. Устройство типовой ячейки памяти динамического ОЗУ приведено на рис. 7.5. Хранение информации происходит в емкости CGS (затвор — исток) полевого транзистора, а транзистор VT1 выполняет роль ключа выборки. Сохранность информации при выборке и хранении обеспечивается при помощи
усилителя-регенератора. Режим хранения обеспечивается периодической регенерацией заряда емкости CGS с частотой около сотни герц. В процессе регенерации уменьшение заряда на емкости CGS компенсируется усилителем регенератором. Динамические ОЗУ имеют малую потребляемую мощность (50... 500 мВт) при увеличении информационной емкости. по сравнению со статическим ОЗУ почти на порядок. Это объясняется тем, что для хранения информации почти не потребляется энергия, и все структу-ры работают в импульсном (ключевом) режиме. Постоянные запоминающие устройства. Микросхемы ПЗУ можно разделить на две группы: однократно программируемые и перепрограммируемые. В первом типе ПЗУ информация после записи меняться не может, и микросхема работает только в режиме считывания. Структурная схема ПЗУ приведена на рис. 17.6. От схемы ОЗУ, приведенной на рис. 17.1, эта схема отличается отсутствием устройства записи и линий, которые его обслуживают. Кроме того, изменяется выполнение накопителя, (матрицы памяти). В настоящее время находят применение два типа накопителей ПЗУ: масочные и программируемые.
В масочных ПЗУ (МПЗУ) накопитель программируется на стадии изготовления, когда информация, записываемая в него, определяется построением одного из слоев схемы при помощи специального фотошаблона. В программируемых ПЗУ (ППЗУ) накопитель выполняют на базе ЗЯ с плавкими перемычками; их упрощенная схема приведена на рис. 17.7. При программировании эти плавкие перемычки пережигают с помощью специального программирующего устройства. Сами плавкие перемычки изготовляют из нихрома или других тугоплавких материалов и защищают специальным диэлектриком, обеспечивающим надежность в условиях повышенной влажности. Процесс записи информации в схему представляет собой избирательное разрушение плавких перемычек током, обеспечиваемым устройством программирования. На рис. 17.7 плавкие перемычки ПП показаны в виде предохранителей, включенных в эмиттеры многоэмиттерных транзисторов VТ0...VТп. Программируемые элементы включены между эмиттерами транзисторов матриц и разрядными шинами. Наличие перемычки соответствует логическому 0 на выходе усилителя считывания, а отсутствие перемычки — логической единице. Пережигание перемычек в режиме программирования выполняется серией импульсов по специальной программе. Для повышения надежности работы ПЗУ методика программирования предусматривает подачу серии 40... 100 импульсов после фиксации момента пережигания перемычки, а также обязательную термотренировку запрограммированного ПЗУ при определенной температуре (около 100°С) в заданном электрическом режиме.
Репрограммируемые ПЗУ (РПЗУ). Репрограммируемые ПЗУ делятся на две группы: 1) с электрическим программированием и ультрафиолетовым стиранием EPROM; 2) с электрическим программированием и электрическим стиранием EEPROM. К последней группе также относятся РПЗУ с избирательным стиранием EAROM. Запоминающие ячейки РПЗУ строятся на л-МОП или КМОП транзисторах. Для построения ЗЯ используются различные физические явления хранения заряда на границе между двумя различными диэлектрическими средами или проводящей и диэлектрической средой. В первом случае диэлектрик под затвором МОП транзистора делают из двух слоев: из нитрида кремния и двуокиси кремния. Такая структура называется МНОП: металл — нитрид кремния — окисел — полупроводник. В такой структуре при высоком напряжении на затворе (около 30 В) происходит туннельное перемещение носителей заряда через слой двуокиси кремния, который делается очень тонким (до 10нм), к границе двух диэлектриков, вблизи которой имеется много ловушек
для носителей заряда. В результате внутри МОП структуры образуется некоторый заряженный слой, который приводит к изменению порогового напряжения МОП транзистора. При постоянном напряжении на затворе в режиме считывания информации это приводит к изменению тока считывания. Во втором случае затвор МОП транзистора делают плавающим, т. е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения (также около ЗОВ). В результате плавающий затвор начинает влиять на ток стока, что и используется при считывании информации. Такие РПЗУ обычно называют выполненными по структуре ЛИПЗ (лавинно-инжекционные с плавающим затвором). Поскольку затвор транзистора со всех сторон окружен изолирующим слоем, ток утечки очень мал и хранение информации достаточно длительное (десятки лет). Для стирания информации в таких приборах пользуются облучением кристалла через прозрачное специальное окно в корпусе микросхемы ультрафиолетовым светом. Облучение ультрафиолетовыми лучами приводит к резкому увеличению тока утечки, что способствует рассасыванию носителей заряда. Такие микросхемы получили название РПЗУ УФ или EPROM. Другой способ перезаписи информации используется в РПЗУ с электрическим программированием. Он основан на размещении над плавающим затвором второго — управляющего — затвора. Подача напряжения на управляющий затвор приводит к рассасыванию заряда за счет туннельного эффекта. Эти РПЗУ называются EEPROM и имеют несомненные преимущества перед РПЗУ УФ, так как
не требуют при перепрограммировании специальных источников ультрафиолетового света. Структурная схема такого РПЗУ с шинным управлением приведена на рис. 17.8. Интегральные микросхемы ЗУ. Промышленность выпускает большое количество различных микросхем ЗУ, отличающихся информационной емкостью, организацией, технологией изготовления. Условное схематичное изображение микросхемы статического ОЗУ приведено на рис. 17.9 а. Функциональное назначение ИМС указывается обозначением RAM. Отдельные типы микросхем ОЗУ могут иметь выходные каскады с тремя состояниями или с открытым коллектором. Для обозначения выхода с тремя состояниями используется знак Условные схематичные изображения динамического ОЗУ и ПЗУ приведены на рис. 17.9 б и в. Не нашли, что искали? Воспользуйтесь поиском:
|