ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Переосмысление метода 2 страницаВ возрасте семнадцати лет Ньютона вернули домой, чтобы он занялся фермерством, но выяснилось, что для этого занятия он совершенно не подходит. Через два года его отправили в Тринити-колледж Кембриджского университета, где он стал студентом-сайзером, то есть с него не брали плату за обучение, проживание и питание, но он должен был выполнять различные работы в колледже и прислуживать тем студентам, которые имели возможность оплачивать свои счета. Как и Галилей в Пизе, Ньютон начал свое образование с изучения трудов Аристотеля, но вскоре углубился в собственные разработки. На втором курсе он стал вести серию заметок под названием «Вопросник» (Questiones quandam philosophicae) в тетради, в которой ранее делал заметки о работах Аристотеля и которая, к счастью, сохранилась до наших дней. В декабре 1663 г. Кембриджский университет получил пожертвование от Генри Лукаса, члена английского парламента, учредившего именную профессуру – должность Лукасовского профессора математики – со стипендией £100 в год. Начиная с 1664 г. эту должность занимал Исаак Барроу, первый профессор математики в Кембридже, который был на двенадцать лет старше Ньютона. Примерно в это время Ньютон начал изучать математику под началом Барроу и самостоятельно, а также получил степень бакалавра искусств. В 1665 г. чума поразила Кембридж, университет был практически закрыт, и Ньютон уехал домой в Вулсторп. В эти годы, начиная с 1664 г., он начал свои научные исследования, о которых мы поговорим ниже. Вернувшись в 1667 г. в Кембридж, Ньютон был избран в братство Тринити-колледжа, что давало ему £2 в год и право свободно пользоваться библиотекой колледжа. Он много работал с Барроу, помогая ему записывать лекции. Затем, в 1669 г. Барроу освободил должность Лукасовского профессора математики, чтобы полностью посвятить себя теологии. По предложению Барроу должность перешла к Ньютону, который, получив финансовую поддержку от матери, начал жить на широкую ногу, покупая новую одежду, мебель и даже немного увлекшись азартными играми[268]. А незадолго до этого, сразу же после реставрации монархии Стюартов в 1660 г., несколько лондонцев, в том числе Бойль, Гук, а также астроном и архитектор Кристофер Рен, создали научное общество, где собирались, чтобы обсуждать вопросы натурфилософии и наблюдать за демонстрацией экспериментов. Вначале в нем был только один иностранец – Христиан Гюйгенс. В 1662 г. общество получило королевскую грамоту и стало называться Лондонским королевским обществом. Оно сохранилось до наших дней как Британская национальная академия наук. В 1672 г. Ньютон был избран членом Лондонского королевского общества, а позже стал его президентом. В 1675 г. Ньютон столкнулся с кризисной ситуацией. После восьми лет членства в братстве Тринити-колледжа он, как и все другие братья в колледже Кембриджа, должен был принять духовный сан в англиканской церкви. Для этого требовалось поклясться в вере в Святую Троицу, но для Ньютона, который отверг решение Никейского собора о том, что Бог-отец и Бог-сын являются единым целым, это было невозможно. К счастью, документ, по которому была учреждена должность Лукасовского профессора математики, включал оговорку о том, что человек, ее занимающий, не обязан каким-либо образом заниматься делами церкви. На этом основании король Карл II выпустил указ о том, что от занимающего должность Лукасовского профессора математики впредь не должны требовать вступления в духовный сан. Таким образом, Ньютон и дальше мог оставаться в Кембридже. А теперь перейдем к той огромной работе, которую в 1664 г. Ньютон начал в Кембридже. Эти исследования включали в себя оптику, математику и то, что позже было названо динамикой. Работы Ньютона в каждой из названных областей характеризуют его как одного из величайших ученых в истории. Главные экспериментальные достижения Ньютона касались оптики[269]. Студенческий «Вопросник» (Questiones quandam philosophicae) характеризует своего автора как ученого, заинтересовавшегося природой света. В отличие от Декарта, Ньютон пришел к заключению, что свет не оказывает никакого давления на глаза, поскольку, если бы это было так, небо казалось бы нам более ярким, когда мы бежим. В 1665 г. в Вулсторпе он внес свой величайший вклад в оптику – создал теорию цвета. Еще со времен античности известно, что, когда свет проходит через искривленное стекло, появляются различные цвета, но считалось, что эти цвета каким-то образом производятся самим стеклом. Ньютон предположил, что белый свет состоит из всех цветов одновременно, а угол преломления луча в стекле или воде зависит от его цвета. Например, для красного цвета он немного меньше, чем для синего, поэтому лучи разного цвета разделяются, когда свет проходит через призму или каплю воды[270]. Это объясняло то, чего не понимал Декарт, – появление цветов радуги. Чтобы проверить эту идею, Ньютон провел два важных эксперимента. Во-первых, использовав призму, чтобы выделить лучи синего или красного цвета, Ньютон попытался еще раз пропустить их через другие призмы и увидел, что дальнейшего разложения на новые цвета не происходит. Затем, расставив призмы определенным образом, он сумел соединить обратно все цвета, которые получаются при преломлении белого цвета, и увидел, что при этом снова получается белый цвет. Зависимость угла преломления от цвета имела одно неприятное свойство: стеклянные линзы телескопов, которые были у Галилея, Кеплера и Гюйгенса, фокусировали различные цвета белого по-разному, искажая изображения далеких объектов. Чтобы избежать этой хроматической аберрации, Ньютон в 1669 г. изобрел телескоп, где свет первоначально фокусировался с помощью вогнутого зеркала, а не с помощью линзы (затем плоское зеркало направляло лучи из трубы телескопа в окуляр, состоящий из линзы, из-за чего не от всей хроматической аберрации удалось избавиться). С помощью телескопа-рефлектора длиной всего 15 см Ньютону удалось добиться увеличения в 40 раз. Все основные современные астрономические оптические телескопы – это телескопы-рефлекторы, потомки того, который изобрел Ньютон. Когда я побывал в сегодняшней штаб-квартире Лондонского королевского общества в Карлтон-Хаус-Террас, в качестве поощрения меня провели в подвальный этаж, чтобы взглянуть на маленький телескоп Ньютона, второй из тех, что он сделал. В 1671 г. Генри Олденбург, секретарь и духовный лидер Королевского общества, предложил Ньютону опубликовать описание своего телескопа. Ньютон поместил письмо с этим описанием и свою работу о цвете в «Философские записки королевского общества» в начале 1672 г. После этого разгорелась полемика по поводу значимости и оригинальности работы Ньютона, в которой особое участие принимал Гук, бывший с 1662 г. куратором экспериментов при Королевском обществе и с 1664 г. читавший лекции по механике, профинансированные сэром Джоном Кутлером (так называемые «кутлеровские лекции»). Гук не был слабым оппонентом. Он сам внес значительный вклад в развитие астрономии, микроскопии, часового механизма, механики и градостроительства. Гук заявлял, что сам проводил такие же эксперименты со светом, как и Ньютон, и что они не доказывают ничего – призма просто добавляет цвета́ к белому свету. В 1675 г. в Лондоне Ньютон прочитал лекцию по своей теории света. Он предполагал, что свет, как и любое вещество, состоит из множества маленьких частиц, что противоречило точке зрения, которой в то время придерживались Гук и Гюйгенс (о том, что свет – это волна). Это был один из тех случаев, когда научное чутье Ньютона подводило его. Существовало множество наблюдений, доказывающих волновую природу света. Действительно, в современной квантовой механике свет описывается как совокупность не имеющих массы частиц, которые называются фотонами, но в свете, с которым мы сталкиваемся в повседневной жизни, количество фотонов огромно, и вследствие этого свет ведет себя как волна. В своей работе «Трактат о свете», вышедшей в 1678 г., Гюйгенс описал свет как волну возмущений в среде, эфире, состоящем из огромного количества мельчайших материальных частиц, располагающихся в тесном соседстве. Как и волна в океане в области больших глубин не перемещает воду вдоль поверхности океана, а лишь вызывает ее вертикальные колебания, так и свет, по теории Гюйгенса, – это волна возмущений среди частиц эфира, которая движется вдоль луча света, но сами частицы при этом вдоль луча не перемещаются. Каждая затронутая частица становится новым источником возмущения, что создает общую амплитуду волны. Конечно, после работ Джеймса Клерка Максвелла в XIX в. мы знаем (даже если отвлечься от квантовых эффектов), что Гюйгенс был прав только наполовину: свет – это действительно волна, но волна возмущений в электрическом и магнитном поле, а не волна возмущений материальных частиц. Используя волновую теорию света, Гюйгенс сумел вывести, что свет в однородной среде (или в пустоте) ведет себя так, как будто двигается по прямым линиям, то есть волновое возмущение частиц как будто слагается из колебаний частиц только вдоль этих линий. Он по-новому объяснил правило равенства углов падения и отражения и закон преломления Снеллиуса, не используя априорное предположение Ферма о том, что свет совершает свой путь за наикратчайшее время (см. техническое замечание 30). По теории преломления Гюйгенса луч света преломляется, проходя под непрямым углом границу между двумя средами, скорость света в которых отличается, примерно так же, как и отряд солдат изменяет направление своего движения вслед за передовым флангом строя, переходя с хорошей дороги на болотистую местность, где его скорость снижается. Немного отклоняясь от темы, скажу, что по волновой теории Гюйгенса, в отличие от Декарта, свет движется с конечной скоростью. Гюйгенс утверждал, что эффекты, вызванные этой конечной скоростью, просто трудно заметить, потому что свет движется очень быстро. Если бы, к примеру, свету был необходим час, чтобы преодолеть расстояние от Земли до Луны, то во время лунного затмения Луна располагалась бы не непосредственно напротив Солнца, а отставала бы от него примерно на 33°. Поскольку такого отставания мы не наблюдаем, Гюйгенс сделал вывод, что скорость света должна быть, по крайней мере, в 100 000 раз быстрее скорости звука. Это предположение недалеко от истины – на самом деле соотношение этих скоростей составляет примерно миллион раз. Также Гюйгенс описал недавние наблюдения спутников Юпитера датским астрономом Оле Рёмером. Эти наблюдения показывали, что период обращения Ио кажется короче, когда Земля и Юпитер приближаются друг к другу, и длиннее, когда они расходятся (на Ио обратили особое внимание, поскольку у него самый короткий орбитальный период из всех галилеевских спутников Юпитера – всего 1,77 суток). Гюйгенс интерпретировал это как явление, которое позже стало называться эффектом Доплера: когда Юпитер и Земля сближаются или расходятся, расстояние между ними при каждом последующем окончании периода обращения Ио соответственно уменьшается или увеличивается. Поэтому, если свет движется с конечной скоростью, временной интервал между наблюдениями каждого полного периода обращения Ио будет, соответственно, меньше или больше, чем если бы Земля и Юпитер находились в состоянии покоя. Точнее говоря, долевой сдвиг в наблюдаемом периоде обращения Ио должен быть равен отношению относительной лучевой скорости Земли и Юпитера к скорости света. При этом относительная лучевая скорость может принимать как положительные, так и отрицательные значения в зависимости от того, отдаляются Земля и Юпитер или сближаются (см. техническое замечание 31). Измерив видимые изменения периода Ио и зная относительную скорость Земли и Юпитера, можно высчитать скорость света. Поскольку Земля движется быстрее Юпитера, именно вклад Земли в относительную скорость наибольший. В те времена размеры Солнечной системы были известны не очень хорошо, так же как и численное значение относительной скорости расхождения Земли и Юпитера, но, опираясь на данные Рёмера, Гюйгенс сумел высчитать, что свету требуется 11 минут, чтобы преодолеть расстояние, равное радиусу земной орбиты. Этот результат не зависел от конкретного значения радиуса. Иначе говоря, поскольку астрономическая единица определяется именно как радиус земной орбиты, то Гюйгенс определил, что свет проходит астрономическую единицу за 11 минут. Современное значение скорости света составляет одну астрономическую единицу за 8,32 минуты. И Гюйгенсу, и Ньютону были доступны экспериментальные свидетельства того, что свет имеет волновую природу: открытие дифракции иезуитом из Болоньи Франческо Мария Гримальди, учеником Риччоли, опубликованное после его смерти в 1665 г. Гримальди обнаружил, что тень от тонкого прутика в солнечном свете выглядит не идеально четкой, но окаймленной тонкими полосками. Это явление связано с тем фактом, что длина волны света не является ничтожно малой по сравнению с толщиной прутика, но Ньютон считал, что это проявление некоторого рода рефракции, возникающей на поверхности прутика. Вопрос о корпускулярной или волновой природе света перешел в разряд решенных для большинства физиков к началу XIX в., когда Томас Юнг открыл интерференцию – узор, получающийся из-за усиления или угасания световых волн, которые проходят в одну точку разными путями. Как уже было упомянуто, в XX в. стало понятно, что обе эти теории не являются взаимоисключающими. В 1905 г. Эйнштейн понял, что, хотя свет в большинстве случаев ведет себя как волна, энергия в нем передается в маленьких пакетах, которые позже получили названия фотонов. Каждый из них обладает крошечной энергией и импульсом, пропорциональными частоте света. Ньютон в конце концов представил свою работу по свету в книге «Оптика», написанной на английском в начале 1690-х гг. Она была опубликована в 1704 г., после того, как Ньютон уже стал знаменит. Ньютон был не только великим физиком, но и выдающимся математиком. Начиная с 1664 г. он изучал работы по математике, в том числе «Начала» Евклида и «Геометрию» Декарта. Вскоре Ньютон смог разрабатывать собственные решения различных задач, многие из которых были связаны с бесконечностью. Например, он рассматривал бесконечные ряды типа x – x ²/2 + x³/3 – x 4/4+… и показал, что сумма такого ряда сходится в логарифм[271] 1 + х. В 1665 г. Ньютон начал размышлять о бесконечно малых величинах. Он задумался над задачей: предположим, что нам известно расстояние D (t), пройденное за время t. Каким образом можно найти скорость в любой момент времени? Ньютон рассуждал, что при неравномерном движении скорость в любой момент времени составляет отношение пройденного расстояния к затраченному времени в любой бесконечно малый интервал времени. Введя символ о для обозначения бесконечно малого интервала времени, он определил скорость за время t как отношение к o расстояния, пройденного в интервал времени между t и t + o, то есть скорость равна [ D (t + o) – D (t)]/ o. Например, если D (t) = t ³, тогда D (t + o) = t ³ + 3 t ² o + 3 to ² + o ³. Поскольку о стремится к нулю, мы можем не учитывать слагаемые, пропорциональные o² и o³, и принять равенство D (t + o) = t ³ + 3 t ² o. Таким образом, D (t + o) – D (t) = 3 t ² o и скорость равна просто 3 t ². Ньютон назвал это флюксией D (t), но позже это стало называться производной, одним из основных инструментов современного дифференциального исчисления[272]. Далее Ньютон заинтересовался проблемой нахождения площадей фигур, ограниченных кривыми. Его ответ представляет собой фундаментальную теорему математического анализа. Пусть надо найти такую функцию, флюксией которой является функция, представленная в виде кривой. Например, как мы уже видели ранее, y = 3 x ² – это флюксия функции y = x ³, поэтому площадь под параболой y = 3 x ² между х = 0 и любым другим х равна x ³. Ньютон назвал это «обратным методом флюксий», в современной математике это называется интегрированием. Ньютон изобрел дифференциальное и интегральное исчисления, но долгое время эти работы не были широко известны. Только в 1671 г. он решил их опубликовать вместе со своей работой по оптике, но, очевидно, в Лондоне не нашлось книгоиздателя, который согласился бы на эту публикацию без солидной платы[273]. В 1669 г. Барроу передал рукопись Ньютона «Анализ с помощью уравнений с бесконечным числом членов» (De analysi per aequationes numero terminorum infinitas) математику Джону Коллинзу. Ее копию увидел во время своего посещения Лондона в 1676 г. философ и математик Готфрид Вильгельм Лейбниц, бывший ученик Гюйгенса, который был на несколько лет младше Ньютона и независимо от него открыл основную суть математического анализа годом ранее. В 1676 г. Ньютон описал некоторые из своих результатов в письмах, рассчитывая, что Лейбниц увидит эти письма. В 1684 и 1685 гг. Лейбниц опубликовал свою работу по математическому анализу в статьях, не ссылаясь на Ньютона. В этих публикациях Лейбниц ввел термин «математический анализ» и его современные обозначения, в том числе знак интеграла. Чтобы обозначить свои права на математический анализ, Ньютон описал свои собственные методы на двух листах, включенных в издание «Оптики» 1704 г. В январе 1705 г. в анонимном отзыве на «Оптику» было отмечено, что эти методы были заимствованы у Лейбница. Ньютон предполагал, что этот отзыв написал сам Лейбниц. Затем в 1709 г. в «Философских записках Королевского общества» вышла статья Джона Кейла, защищавшего приоритет Ньютона на это открытие. В 1711 г. Лейбниц ответил злобной отповедью в адрес Королевского общества. В 1712 г. Королевское общество собрало анонимный комитет для разрешения противоречия по этому вопросу. Два века спустя список членов этого комитета был рассекречен, и выяснилось, что он состоял практически целиком из сторонников Ньютона. В 1715 г. комитет пришел к решению, что математический анализ является заслугой Ньютона. План доклада по этому вопросу набросал для комитета сам Ньютон. Его заключения подкреплялись анонимным отзывом на доклад, автором которого также был он сам. Современные ученые считают[274], что Ньютон и Лейбниц открыли математический анализ независимо. Ньютон сделал это на десятилетие раньше Лейбница, но Лейбниц получил всю славу, опубликовав свою работу. Ньютон, напротив, единственный раз, в 1671 г. попытавшись найти издателя для своих заметок по математическому анализу, похоронил свою работу до тех пор, пока не был вынужден извлечь ее наружу, начав противостояние с Лейбницем. Чаще всего решение выйти на публику становится критическим моментом в процессе научного открытия[275]. Оно свидетельствует о том, что автор считает, что его работа верна и может быть использована другими учеными. Именно по этой причине сегодня заслуги за научное открытие достаются тому, кто первый его опубликует. Но, несмотря на то что Лейбниц был первым, кто опубликовал работы по математическому анализу, как мы увидим далее, именно Ньютон, а не Лейбниц, сумел приложить математический анализ к научным задачам. Хотя, как и Декарт, Лейбниц был великим математиком, чьи философские труды вызывают огромное восхищение, он не внес особого вклада в развитие естественных наук. Именно теории движения и притяжения Ньютона вызвали величайший, исторический переворот. Идея о том, что сила тяжести, которая заставляет предметы падать на землю, ослабевает при увеличении расстояния от Земли, зародилась еще в древности. Именно это предполагал еще в IX в. много путешествовавший ирландский монах Дунс Скот (Иоанн Скот Эригена), который, правда, никак не связывал эту силу с движением планет. Предположение о том, что сила, удерживающая планеты на их орбитах, ослабевает пропорционально квадрату расстояния от Солнца, возможно, впервые было сделано в 1645 г. французским священником Исмаэлем Буйо, который позднее был избран в Лондонское королевское общество и на которого ссылался Ньютон. Но именно Ньютон это доказал и связал силу с притяжением. Пятьдесят лет спустя Ньютон описал, как он начал изучать притяжение. Хотя его заявления нуждаются в большом количестве разъяснений, я чувствую, что не могу не процитировать их, потому что именно в этих заявлениях Ньютон своими собственными словами описывает то, что стало поворотным моментов в истории цивилизации. Согласно Ньютону, это произошло в 1666 г., когда:
«…Я начал размышлять о притяжении, простирающемся до орбиты Луны и дальше (обнаружив, как оценить силу, с которой шар вращается внутри сферы и оказывает давление на поверхность сферы). Из закона Кеплера, согласно которому периоды обращения планет вокруг Солнца находятся в пропорции 3:2 с расстоянием от центров их орбит, я вывел, что сила, удерживающая планеты на их орбитах, должна аналогично соотноситься с квадратами расстояний от центра, вокруг которого они вращаются, с помощью этого сравнил Луну на ее орбите с силой притяжения на поверхности Земли и нашел, что они подходят очень хорошо. Все это [в том числе его работы по бесконечно малым числам и математическому анализу] было сделано за два “чумных” года, 1665 и 1666 гг. В те дни я был в расцвете моей эры изобретений и размышлял о математике и философии более чем когда-либо…»[276]
Как я уже сказал, эти высказывания требуют некоторых разъяснений. Во-первых, слова, которые Ньютон взял в скобки: «обнаружив, как оценить силу, с которой шар вращается внутри сферы и оказывает давление на поверхность сферы», относятся к расчету центробежной силы, который к тому времени уже был проведен Гюйгенсом – примерно в 1659 г. (возможно, Ньютон об этом не знал). Для Гюйгенса и Ньютона (как и для нас) ускорение имело более широкое определение, чем просто число, выражающее изменение скорости за прошедшее время; это имеющее направление количество, показывающее как изменение скорости за прошедшее время в определенном направлении, так и модуль скорости. При движении по окружности ускорение присутствует даже при постоянной скорости – это центростремительное ускорение, которое складывается из постоянного поворота в сторону центра окружности. Гюйгенс и Ньютон пришли к заключению, что тело, движущееся с постоянной скоростью v по окружности радиусом r, обладает ускорением v² / r в сторону центра окружности, поэтому сила, необходимая для того, чтобы оно удерживалось на этой окружности и не улетало по прямой в окружающее пространство, должна быть пропорциональна v² / r (см. техническое замечание 32). Сопротивление центростремительному ускорению Гюйгенс назвал «центробежной силой», которую тело испытывает, когда его раскручивают на конце веревки по кругу. Для этого тела сопротивление обеспечивается центробежной силой, которая проявляется в натяжении веревки. Но планеты не привязаны веревками к Солнцу. Что же тогда противостоит центробежной силе, испытываемой планетами при практически круговом движении вокруг Солнца? Как мы увидим далее, ответ на этот вопрос привел Ньютона к открытию обратной пропорции квадратов в законе тяготения. Далее, в словах «из закона Кеплера, согласно которому периоды обращения планет вокруг Солнца соотносятся в пропорции 3:2 с расстоянием до центра их орбит» Ньютон говорит о Третьем законе Кеплера (как мы его сегодня называем) – квадраты периодов обращения планет вокруг Солнца относятся как кубы средних радиусов их орбит, или, другими словами, о том, что периоды пропорциональны степени 3/2 («пропорция 3:2») средних радиусов орбит[277]. Период вращения тела со скоростью v по окружности радиусом r равен длине окружности 2 πr, деленной на скорость v, поэтому для круговых орбит Третий закон Кеплера гласит, что отношение r² / v² пропорционально r³, следовательно, их обратное отношение v² / r² пропорционально 1/ r³. Из этого следует, что сила, удерживающая планеты на их орбитах, пропорциональная v² / r, должна быть пропорциональна 1/ r². Это и есть закон обратной пропорции квадратов в законе тяготения. Само по себе это можно рассматривать просто как способ переформулировать Третий закон Кеплера. В рассуждениях Ньютона о планетах ничто не указывало на связь между силой, удерживающей планеты на их орбитах, и общеизвестными явлениями, связанными с силой тяготения на поверхности Земли. Эта связь появляется после того, как Ньютон начинает рассуждать о Луне. Утверждение Ньютона о том, что он «сравнил Луну на ее орбите с силой притяжения на поверхности Земли и нашел, что они подходят очень хорошо», указывает на то, что он рассчитал центростремительное ускорение Луны и нашел, что оно меньше ускорения свободного падения тел вблизи поверхности Земли в том самом соотношении, которого можно ожидать, если оба эти ускорения обратно пропорциональны квадрату расстояния от центра Земли. Если быть точнее, Ньютон взял радиус орбиты Луны (хорошо известный по измерению суточного параллакса Луны), равный 60 земным радиусам; в действительности он составляет около 60,2 земных радиуса. Он использовал грубое округление значения радиуса Земли[278], в результате чего получилось весьма приблизительное значение радиуса орбиты Луны, и, зная, что сидерический период обращения Луны вокруг Земли составляет примерно 27,3 суток, он смог оценить скорость Луны и из нее вывести центростремительное ускорение. Это ускорение оказалось меньше ускорения свободного падения у поверхности Земли на показатель, приближенно (очень приближенно) равный 1/(60)², чего и можно было ожидать, если считать силу, удерживающую Луну на ее орбите, той же, что притягивает тела к земной поверхности, лишь уменьшенной в соответствии с законом обратных квадратов (см. техническое замечание 33). Именно это Ньютон имел в виду, когда говорил о двух силах, что «нашел, что они подходят очень хорошо». Это был кульминационный шаг в объединении земного и небесного в науке. Коперник поместил Землю среди других планет, тогда как Тихо Браге показал, что в небесах происходят изменения, а Галилей увидел, что поверхность Луны неровная, как и поверхность Земли, но ни одно из этих нововведений не связывало движение планет с силами, которые можно наблюдать на Земле. Декарт пытался понять движение тел в Солнечной системе как результат взаимодействия вихрей в эфире, сравнивая их с вихрями в луже воды на Земле, но его теория не имела успеха. Теперь же Ньютон показал, что сила, которая удерживает Луну на орбите вокруг Земли и планеты на их орбитах вокруг Солнца, – это та же самая сила притяжения, которая заставляет яблоко падать на землю Линкольншира и имеет те же самые количественные характеристики. После этого открытия о разграничении между небесным и земным, которое начиная со времен Аристотеля сдерживало развитие физики, пришлось навсегда забыть. Но от этого открытия все еще было далеко до Закона всемирного тяготения, который гласит, что любое тело во Вселенной, а не только Земля и Солнце, притягивает любое другое тело с силой, обратно пропорциональной квадрату расстояния между ними. В аргументах Ньютона все еще зияли четыре огромные прорехи:
1. Сравнивая центростремительное ускорение Луны с ускорением свободного падения тел у поверхности Земли, Ньютон предполагал, что сила, производящая это ускорение, ослабевает обратно пропорционально квадрату расстояния но расстояния от чего? Это не имело большого значения для Луны, которая находится от Земли так далеко, что Земля может быть принята за точку, когда речь идет о движении Луны. Но для яблока, падающего на землю Линкольншира, Земля простирается непосредственно под деревом, от места, расположенного всего в нескольких метрах, до места на противоположной стороне Земли, отдаленного на 12 742 км. Ньютон предполагал, что расстояние, которое соотносится с любым падающим телом у поверхности Земли, – это расстояние до центра Земли, но это не было очевидно.
2. Ньютоновское объяснение Третьего закона Кеплера не принимало во внимание совершенно очевидную разницу между планетами. Каким-то образом не придавалось никакого значения тому, что Юпитер намного больше Меркурия; разница между их центростремительными ускорениями зависела только от расстояния до Солнца. Еще более значительным было то, что ньютоновское сравнение центростремительного ускорения Луны и ускорения свободного падения у поверхности Земли полностью игнорировало разницу между Луной и любым падающим телом, например, яблоком. Почему эта разница не имеет никакого значения?
3. В работе, датированной им 1665–1666 гг., Ньютон интерпретировал Третий закон Кеплера как положение о том, что для любых разных планет произведение центростремительного ускорения на квадраты их расстояний от Солнца будет одинаковым. Но общее значение этого произведения совсем не равно произведению центростремительного ускорения Луны на квадрат ее расстояния до Земли; оно намного больше. Что влияет на эту разницу?
4. Наконец, в своей работе Ньютон считал, что орбиты планет и Луны являются круговыми и небесные тела движутся по ним с постоянной скоростью, хотя Кеплер доказал, что орбиты являются не окружностями, а эллипсами, Солнце и Земля находятся не в центре эллипса, а скорости планет и Луны только приближаются к постоянным.
Начиная с 1666 г. Ньютон пытался разобраться с этими неувязками. Тем временем другие ученые приходили к тем же выводам, что и Ньютон. В 1679 г. старый соперник Ньютона Гук опубликовал свои «кутлеровские лекции», в которых содержались некоторые предположения по поводу движения и притяжения, хотя и без математических доказательств: Не нашли, что искали? Воспользуйтесь поиском:
|