ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Простейшие задачи аналитической геометрии на плоскости.Простейшие задачи аналитической геометрии
где и радиус-векторы точек и . В координатах: на прямой на плоскости в пространстве
В координатах: на прямой ; на плоскости , ; в пространстве , , Линия на плоскости. Основные понятия. Определение. Линия на плоскости – множество точек плоскости, обладающих некоторым только им присущим геометрическим свойством. Определение. Уравнением линии на плоскости называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Определение. Уравнением линии в полярной системе координат называется уравнение , если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению. Линию на плоскости можно задать параметрическими уравнениями где и – непрерывны по параметру . Чтобы перейти от параметрических уравнений к уравнению вида надо из двух уравнений исключить параметр . Пример. Какая линия определяется параметрическими уравнениями ? Решение. Исключая параметр , приходим к уравнению . В силу параметрических уравнений , . Следовательно, данные параметрические уравнения определяют луч – биссектрису I-го координатного угла. Линию на плоскости можно задать векторным уравнением , где – скалярный переменный параметр. Этому уравнению в системе координат соответствуют два скалярных уравнения .
Векторное уравнение и параметрические уравнения линии имеют механический смысл: при перемещении точки на плоскости указанные уравнения называются уравнениями движения, а линия – траекторией точки, параметр при этом есть время. Не нашли, что искали? Воспользуйтесь поиском:
|