![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИОсновные понятия о математических моделях на основе дифференциальных уравнений Законы Вселенной написаны на языке математики. Алгебра решает много задач с постоянными величинами, но самые интересные природные явления включают изменение и описываются уравнениями, которые связывают изменяющиеся величины. Поскольку производная dx/dt = f′(t) функции f является скоростью изменения величины х = f(t), которая зависит от независимой переменной t, естественно, что уравнения, содержащие производные, часто используются для описания изменений, происходящих во Вселенной. Уравнение, связывающее неизвестную функцию и одну или несколько ее производных, называют дифференциальным уравнением
Пример: Предположим, что 1000 = Р(0) = Ce0 = C, 2000 = Р(1) = Cek
Из этого следует, что С = 1000 и что Текст на MATLAB k=log(2); t=-1:0.5:5; C=[ -0.12; -0.06; -0.03; -0.01; -0.005; 0.005; 0.01; 0.03; 0.06; 0.12]; P=C*exp(k*t); plot(t,P); title('P(t)=C*e^k^*^t'); xlabel('t'); ylabel('P(t)'); text(3.1,2.78, 'P(t)= 0.12*e^k^*^t\rightarrow'); text(3.45,1.78, 'P(t)= 0.06*e^k^*^t\rightarrow'); text(3.2,0.85, 'P(t)= 0.03*e^k^*^t\rightarrow'); text(3.1,-0.78, 'P(t)= -0.03*e^k^*^t\rightarrow'); text(3.45,-1.78, 'P(t)= -0.06*e^k^*^t\rightarrow'); text(3.1,-2.78, 'P(t)= -0.12*e^k^*^t\rightarrow'); grid on
Краткое обсуждение прироста населения в примерах 1.5 и 1.6 иллюстрирует процесс математического моделирования (рис. 1.4), который включает следующие этапы.
ЗАКЛЮЧЕНИЕ Математическое моделирование - более универсальный метод, чем физическое. Изменение параметров моделируемой системы или аппарата не требует трудоемких переделок модели. Хорошо построенная модель, как правило, доступнее, информативнее и удобнее для исследования, нежели реальный объект. Таким образом поставленные мною цели и задачи были достигнуты. Я изучил теоретические вопросы математического моделирования, его этапы, классификацию моделей. Разобрал примеры математического моделирования на задачах " об охлаждении тела" и «о радиоактивном распаде» и научился использовать методы математического моделирования при исследовании различных природных социальных процессов.
СПИСОК ЛИТЕРАТУРЫ 1. Самарский А. А., Михайлов А. П. Математическое моделирование: Идеи. Методы. Примеры. — 2-е изд., испр. — М.: Физматлит, 2001. —320 с. 2. Овсянников Л. В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978. — 400 с. 3. Шубин М. А. «Математический анализ для решения физических задач» МЦНМО, 2003 4. Вабищевич П.Н. «Математическое моделирование». — М.: Изд-во МГУ, 1993. — 152 с. 5. Бочков М.В., Ловачев Л.А., Четверушкин Б.Н. Химическая кинетика образования NO при горении метана в воздухе // Математическое моделирование. — 1992. — Т. 4, № 9. — С. 3-36. 6. Арсенъев А.А., Самарский А.А. Что такое математическая физика. — М.: Знание, 1983. — 64 с. 7. А. Г. Коробейников Разработка и анализ математических моделей с использованием MATLAB и MAPLE:(Санкт-Петербург 2010).
Не нашли, что искали? Воспользуйтесь поиском:
|