Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Математический анализ.




Вопросы к экзамену по математике. ФТК. II семестр.

Группы 1082; 1084; 1088. (2014 год)

 

(на оценку 4 или 5)

 

Алгебра.

 

1. Группы, кольца, поля. Изоморфизм групп.

2. Определение линейного пространства. Теорема о линейно зависимых и независимых системах векторов.

3. Теорема о линейной зависимости системы из k векторов, каждый из которых является линейной комбинацией некоторой системы из m векторов (k>m).

4. Базис линейного пространства. Теорема об инвариантности числа элементов базиса. Теорема о количестве элементов линейно независимой системы (Т. 1.3, Т.1.4).

5. Координаты вектора. Теоремы о координатах вектора (Т.1.5 и Т.1.7).

6. Определение и свойства скалярного произведения. Угол между векторами.

7. Пространство правильных рациональных дробей с фиксированным знаменателем. Разложение правильной дроби в сумму простейших дробей.

8. Пространства и .

9. Подпространство линейного пространства. Линейная оболочка системы векторов.

10. Матрицы: определение; сложение и умножение на число. Размерность и базис пространства матриц одного размера.

11. Перемножение матриц. Свойства.

12. Обратные и транспонированные матрицы.

13. Перемножение матриц, разбитых на блоки.

14. Матрицы элементарных преобразований.

15. Ортогональные матрицы.

16. Определитель матрицы: определение, разложение по первому столбцу. Определитель верхней и нижней треугольных матриц. Связь определителей и .

17. Перестановки.

18. Теорема о выражении определителя через сумму слагаемых, в каждом из которых содержится произведение элементов матрицы (по одному из каждой строки и каждого столбца), снабженных знаком по некоторому правилу.

19. Свойства определителей: перестановка строк (столбцов), разложение по произвольному столбцу (строке), сумма произведений элементов i-ой строки на алгебраические дополнения соответствующих элементов j-ой строки.

20. Линейность определителя по элементам строки или столбца. Определитель матрицы, строки (столбцы) которой являются линейно зависимыми. Определитель матрицы, к некоторой строке которой прибавлена другая, умноженная на число. Определитель Вандермонда.

21. Определитель блочной матрицы. Определитель произведения матриц.

22. Обратная матрица. Следствия о треугольных матрицах.

23. LU – разложение матрицы.

24. Метод Гаусса решения систем линейных уравнений в случае, когда системы несовместны или имеют единственное решение.

25..Метод Гаусса решения систем линейных уравнений в случае, когда системы имеют бесконечно много решений. Структура общего решения систем.

26. Однородные системы линейных уравнений.

27. Теорема Крамера.

28. Горизонтальный и вертикальный ранги матрицы. Ранг по минорам. Их совпадение для трапециевидной матрицы.

29. Неизменность ранга матрицы при умножении ее на невырожденную. Теорема о равенстве рангов для произвольной матрицы.

30. Теорема Кронекера-Капелли.

31. Собственные числа и векторы матрицы. Совпадение характеристических многочленов у подобных матриц. Линейная независимость собственных векторов, соответствующих различным собственным числам.

32. Связь между линейной зависимостью системы векторов и соответствующей системы координатных столбцов. Связь координатных столбцов одного вектора в разных базисах.

33. Сумма и пересечение двух подпространств. Теорема о существовании для подпространства : .

34. Теорема о размерности прямой суммы, непрямой суммы двух подпространств.

35. Линейное отображение линейных пространств. Матрица отображения в некоторых базисах. Ее использование для вычисления образа вектора. Связь матриц отображения в разных базисах.

36. Ядро и образ отображения. Ранг отображения, его связь с рангом матрицы отображения. Дефект отображения.

37. Изоморфизм линейных пространств. Необходимое и достаточное условие существования изоморфизма.

38. Собственные числа и собственные векторы оператора. Матрица оператора в базисе из собственных векторов.

39. Линейная независимость собственных векторов, соответствующих различным собственным числам оператора. Собственные подпространства, их размерность. Следствия.

40. Евклидовы и унитарные пространства. Матрица Грама системы векторов. Выражение скалярного произведения векторов через матрицу Грама. Связь матриц Грама разных базисов.

41. Процесс ортогонализации Грама-Шмидта. Теорема о знаке определителя матрицы Грама линейно независимой системы.

42. Ортогональное дополнение подпространства. Теорема о сумме подпространства и его ортогонального дополнения.

43. Теорема о собственных числах и собственных векторах вещественной симметричной матрицы.

44. Теорема об ортогональном подобии вещественной симметричной матрицы некоторой диагональной матрице. Следствия.

45. Определение билинейной и квадратичной форм. Матрица билинейной формы в некотором базисе, ее использование для вычисления билинейной формы. Связь матриц одной билинейной формы в разных базисах.

46. Теорема о существовании ортогонального преобразования базиса, приводящего квадратичную форму к каноническому виду. Практический метод приведения квадратичной формы к каноническому виду с помощью ортогонального преобразования базиса (метод собственных векторов). Построение кривой

.

47. Теорема о необходимом и достаточном условии положительной (отрицательной) определенности квадратичной формы.

48. Теорема о существовании треугольного преобразования базиса, приводящего квадратичную форму к каноническому виду. Критерий Сильвестра.

 

Математический анализ.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных