![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Энергия заряженного конденсатораЗаряд
![]() Очевидно, что эту формулу можно представить в виде
![]() или
![]() Формула (16.17) связывает энергию конденсатора с наличием на его обкладках заряда, а (16.18) – с существованием в промежутке между обкладками электрического поля. В связи с этим возникает вопрос о локализации энергии электрического поля: на зарядах или в пространстве между обкладками. В рамках электростатики ответить на этот вопрос невозможно, однако электродинамика утверждает, что электрическое и магнитное поля могут существовать независимо от зарядов. Поэтому энергия конденсатора сосредоточена в пространстве между обкладками конденсатора и связана с электрическим полем конденсатора. Поскольку поле плоского конденсатора является однородным, можно считать, что энергия распределена между обкладками конденсатора с некоторой постоянной плотностью
![]() Поэтому плотность энергии электрического поля конденсатора оказывается равной
![]()
Учтем, что
![]() Электрическая индукция в соответствии с определением:
![]() где
![]() Первое слагаемое в правой части (16.23) представляет собой энергию, которой обладал бы конденсатор, если в пространстве между обкладками был бы вакуум. Второе слагаемое связано с энергией, затрачиваемой при зарядке конденсатора на поляризацию диэлектрика, заключенного в пространстве между обкладками.
Не нашли, что искали? Воспользуйтесь поиском:
|