ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Занятие 29. Композиционные материалы: классификация и способы получения композиционных материалов.Этот вид конструкционных материалов представляет собой сочетание двух и более химически разнородных материалов с резко отличными свойствами и с чёткой границей раздела между ними. Композиционные материалы состоят из матрицы и наполнителя (упрочнителя). Свойства конструкционных материалов зависят от свойств и объёмной доли матрицы и наполнителя, а также от прочности связи между ними. Как правило, матрицу и наполнитель выбирают так, чтобы они дополняли друг друга, например, пластичная матрица и прочный, но хрупкий наполнитель и. т.д. К материалам наполнителя предъявляются требования высокого модуля упругости, высокой прочности, термостойкости, химической инертности по отношению к матрице и т.д. Композиционный материал обладает свойствами, которыми не обладают ни один из компонентов данной композиции в отдельности. Эти материалы применяют в космических кораблях, самолётах, ракетах, глубоководных аппаратах, транспортных устройствах и т.д. Композиционные материалы подразделяют на три группы: волокнистые, дисперсные и слоистые. Волокнистые композиционные материалы состоят из волокон материала – упрочнителя (проволока из вольврама, молибдена, стали и др., а также стеклянные, углеродные, керамические и др. волокна), распределённом в другом компоненте, являющимся матрицей (металл, полимер, керамика). Волокнистые материалы по ориентировке волокон бывают с однонаправленными (рис. 14.2,а) или ориентированными в двух или более направлениях (рис. 14.2,б) волокнами; по размерам волокон эта группа материалов бывает с непрерывными или короткими (дискретными) волокнами, диаметр волокон 1-50 мкм, а проволоки – доли мм..
а) б) в) Рис. 29.1. Схемы композиционных материалов: а—волокнистые с однонаправленными волокнами; б— волокнистые с перпендикулярно направленными волокнами; в— дисперсные с равномерно распределенными карбидами, боридами и другими соединениями; г — слоистые (м — матрица, в—волокно, д—дисперсные частицы, карбиды и др., с—слоистая композиция)
Армирование металлов (матрицы) высокопрочными волокнами позволяет получать композиции с очень высокой прочностью и жесткостью, в них волокна являются главными компонентами, несущими нагрузку, которую передаёт им металлическая матрица. В волокнистых материалах матрица связывает волокна вместе, защищает их от повреждения и воздействия внешней среды (например, коррозии). Прочность волокнистых композиционных материалов зависит от свойств волокон и матрицы, объёмной доли волокон, ориентировки, размеров и распределения волокон, прочности связи на границе раздела волокно- матрица и других факторов. Так, в композите, в котором матрицей служит алюминий, а наполнителем – стальная проволка диаметром 0,15 мм, достигается предел прочностиσв = 3600 МПа. Это примерно в 40 раз больше, чем у чистого алюминия в отожжённом состоянии после деформации. Волокнистые материалы с однонаправленными волокнами анизотропны, а с взаимно перпендикулярными или расположенными под углом друг к другу - изотропны. Волокнистые композиционные материалы получают заливкой волокон, набранных в специальной фopмe, жидким металлом, например, волокон вольфрама сплавом нихрома или пропиткой волокон расплавом матрицы и др. Дисперсные композиционные материалы состоят из частиц одного или нескольких компонентов (частицы окислов, нитридов, карбидов, боридов и др.), равномерно распределённых в матрице (металле, сплаве, см. рис. 29.1в). Этот вид композицнонных материлов чаще всего производят методом порошковой металлургии для получения металлокерамических и металлических композиций. В качестве исходного материала матрицы используют металл или металлические порошки, например, алюминиевый порошок САП, а наполнителями или упрочнителями служат частицы нитридов, карбидов и др. При нагружении таких материалов матрица несёт основную нагрузку, а частицы упрочнителя служат препятствиями, задерживающими движение дислокаций. Степень дисперсного упрочнения зависит от размера, формы и модуля сдвига частиц добавляемого компонента, расстояния между частицами упрчнителя и характера связи между ними и матрицей. Такие дисперсные композиционные материалы получают в основном методом порошковой металлургии, включающим изготовление тонких порошков или порошковых смесей матрицы и наполнителя, их смешение, холодное прессование, спекание и горячую обработку давлением. Такие композиционные материалы «работают» при температурах до 1200оС. Свойства дисперсных композитов изотропны.
Слоистые композиционные материалы — это многослойные композиции и биметаллы (см. рис. 29.1 г), получаемые сочетанием таких материалов, как нержавеющая сталь – углеродистая сталь, медь (или медные стружки) – углеродистая сталь, титан - углеродистая сталь и многие др. Здесь матрицей служит углеродистая сталь. Для образования металлических связей слоистых композиций необходимо непосредственно перед соединением поверхностей предварительно удалить с них окисные пленки и загрязнения, сблизить очищенные поверхности до расстояния, на котором проявляется действие межатомных сил (до нескольких ангстрем). Сближение металлических поверхностей возможно при их coвмecтнoй пластической деформации прокаткой, прессованием или иным способом обработки давлением. В слоистых композитах слои необязательно должны быть сплошными пластинами. Они могут быть заполнены упорядочено расположенными в одной плоскости отдельными пластинами или волокнами, они могут быть заполнены упорядочено расположенными в одной плоскости отдельными пластинами или волокнами, плотно расположенными в параллельных Композиционные материалы с металлической матрицей. Рис. 29.2. Схема структуры (а) и армирование непрерывными волокнами (б) композиционных материалов.
Волокнистые КМ. На (рис.29.2) приведены схемы армирования волокнистых композиционных материалов. Они делятся, по механизму армирующего действия, на дискретные l/d» 10-103 и с непрерывным волокном l/d = ¥. Дискретные волокна располагаются в матрице хаотично. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения. Чаще КМ представляет слоистую структуру, в котором каждый слой армирован большим числом параллельных непрерывных волокон. КМ отличаются от обычных сплавов высокими значениями временного сопротивления и предела выносливости (на 50 - 100%), модуля упругости, коэффициента жесткости и пониженной склонности к трещинообразованию. Применение КМ повышают жесткость конструкций при одновременном снижении металлоемкости. Прочность КМ определяется свойствами волокон, которые должны обладать более высокими прочностными характеристиками и модулем упругости. КМ на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в КМ уменьшают скорость распространения трещин, зараждающихся в матрице, и практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых КМ является анизотропия механических свойств вдоль и поперек и малая чувствительность к концентраторам напряжений. Они применяются в авиации для высоконагруженных деталей самолетов и двигателе, в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, в горной промышленности, в гражданском строительстве и других областях народного хозяйства. Технология получения полуфабрикатов и изделий из КМ достаточно хорошо отработана. Контрольные вопросы. 1. В чем различие механизмов упрочнения композиционных материалов – волокнистых и дисперсно-упрочненных? 2. Дайте оценку уровню рабочих температур стандартных никелевых сплавов и композиционных никелевых волокнистых и дисперсно-упрочненных материалов. 3. Какие разновидности волокнистых металлических материалов Вы знаете? 6. Укажите номенклатуру деталей, которые можно изготовить из композиционных материалов. Композиционные материалы с неметаллической матрицей Общие сведения, состав и классификация Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиимидная. Матрица связывает композицию, придавая ей форму. Уплотнителями служат волокна: стеклянные, углеродные, борные, органические на основе нитевидных кристаллов, а также металлические, обладающие высокой прочностью и жесткостью.
Рис. 29.3. Схема армирования композиционных материалов.
Карбоволокниты Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон). Бороволокниты. Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя – борных волокон. Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью.
Органоволокниты Органоволокнитыпредставляют собой композиционные материалы, состоящие из полимерно-связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокой удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Вопросы для самопроверки 1. Как классифицируются композиционные материалы с неметаллической матрицей по виду упрочнителя и матрицы? 2. Какие применяются способы укладки наполнителя, и как это отражается на свойствах материала? 3. Что такое карбоволокниты, их состав, разновидности, свойства и условия применения? 4. Опишите бороволокниты, укажите их состав, свойства и применение. 5. В чем преимущества органоволокнитов, их свойства и применение.
Занятие 30. Стали и сплавы с особыми свойствам: износостойкие, жаростойкие, жаропрочные, коррозионостойкие, магнитные, электротехнические. Маркировка их по ГОСТ, свойства, область применения. Износостойкие стали Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к уменьшению их размеров (износу). Износостойкие стали способны сопротивляться процессу изнашивания. Износостойкие стали можно разделить на три группы. В первую группу входят стали, износостойкость которых достигается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливаются шарики и ролики подшипников качения. Они маркируются буквами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1%. Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (-1,5%) и кремния (-1%), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел 3.3.). Третью группу составляют стали износостойкость которых достигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110ΓΙ3. Она имеет невысокую твердость, которая при действии давления и ударов резко повышается, за счет чего и достигается износостойкость. Эта сталь подвергается закалке от 1100°С в воде, после чего получает аустеннтную структуру. Плохо обрабатывается резанием, поэтому применяется в литом состоянии. Не нашли, что искали? Воспользуйтесь поиском:
|