Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Системы управления подвеской




Улучшить подвеску - значит найти наиболее приемлемый компромисс между комфортом и безопасностью. Именно в улучшении этих характеристик подвески способна помочь электроника. Можно выделить три направления электронных систем управления подвеской современного автомобил я:

- управление упругими и амортизирующими элементами подвески;

- управление стабилизаторами поперечной устойчивости;

- управление кинематикой подвески.

Очевидно, что имеют место и комплексные электронные системы управления подвеской.

Характеристики, которые получает подвеска того или иного автомобиля, всегда компромиссны. Чтобы кузов автомобиля в определенных режимах (разгон, торможение, прохождение поворотов) не кренился чрезмерно в сторону или не раскачивался в горизонтальном и вертикальном направлении со значительно й, а иногда - с угрожающей амплитудой, приходится увеличивать жесткость упругих элементов подвески. Однако такой шаг, необходимый для безопасного движения, неизбежно ведет к ухудшению комфорта, поэтому конструкторам почти всегда приходится останавливаться на некоем среднем варианте, который, понятно, не может обеспечить ни максимума безопасности, ни наилучшего комфорта. Идеальная подвеска должна самостоятельно изменять свои характеристики в зависимости от дорожных условий, именно такие системы управления принято называть активными или - ABC (Active Body Control). Системы где системы незначительно меняют свои характеристики или отдают это право водителю, называют полуактивными или пассивными.

По принципу действия развитие получили два направления активных подвесок: пневматические и гидропневматические.

Наиболее распространенные упругие элементы - пружины, рессоры и торсионы - имеют постоянную жесткость. Поэтому регулировать характеристики можно лишь в подвесках с пневмоэлементами, изменение внутреннего давления воздуха в которых позволяет соответствующим образом изменять и жесткость подвески.

Ярким представителем первого направления является разработка фирмы Mercedes-Benz - Airmatic [28].

В подвеске Airmatic подрессоривание каждого отдельного колеса производится не с помощью пружин, а посредством сжатого воздуха, необходимое количество которого быстро подводится или отводится через электромагнитные клапаны к имеющим особую конструкцию амортизаторам. Система Airmatic состоит из передних и задних пневматических амортизационных стоек, компрессора, центрального пневмоаккумулятора, блока управления и датчиков, информирующих блок управления о скорости движения, нагрузке автомобиля и угле поворота рулевого колеса. Узлы и механизмы подвески Airmatic соединены друг с другом воздушными магистралями и подключены в электрическую систему автомобиля.

Не меньшее внимание уделяют электронному управлению амортизаторов, так BMW на моделях 7 серии применяет амортизаторы с изменяемой характеристикой за счет управления перепускными клапанами, рисунок 9.1.

Фирма BMW внедрила систему «Динамик Драйв» (Dynamic Drive) с активными стабилизаторами поперечной устойчивости. Суть устройства: стабилизатор разрезается пополам, а между двумя половинками встраивается гидромотор. Одно плечо стабилизатора жестко связано с корпусом, другое с ротором.

Управляющий блок, получая информацию от датчика поперечных ускорений, открывает нужный (зависит от того, в какую сторону наклоняется кузов) контур, по которому масло подается к гидромотору и поворачивает половинки стабилизатора относительно друг друга. Давление в системе до 18 МПа нагнетает механический насос, чем оно выше, тем на больший угол закручиваются плечи стабилизатора и тем сильнее он сопротивляется кренам

И наиболее сложными являются системы управления кинематикой подвески, с целью повышения устойчивости в прохождении поворотов, в основном пока это спортивные автомобили, так у концептуального «Мерседес-Бенца F400 Карвинг» угол развала колес изменяется на ходу в пределах 20°, позволяя проходить повороты на высокой скорости. В каждой ступице F400 установлено по гидравлическому цилиндру, позволяющему менять наклон колес по отношению к дороге.

 

 


ASR (TRC (трэкшн-контроль), STC, TRACS, ASC+T)

Первым логическим развитием ABS стала АНТИПРОБУКСОВОЧНАЯ система. Принцип действия несложен: в момент трогания автомобиля датчики (ABS) фиксируют проскальзывание одного из ведущих колес, и компьютер притормаживает его с помощью тормозных механизмов. При необходимости та же электроника может сбросить обороты двигателя, поскольку на современных машинах между педалью "газа" и дроссельной заслонкой нет механической связи. То есть, если "утопить" педаль в пол, компьютер не даст ведущим колесам впустую жечь резину и шлифовать асфальт или лед, а максимально быстро, без пробуксовки, разгонит автомобиль.

Антипробуксовочная система не помешает любой машине, независимо от типа привода. Настоящим кладом стала для внедорожников. Вместо сложных трансмиссий они используют полный привод со свободными дифференциалами, а роль блокировок возложена на электронику. Для непролазного бездорожья эта схема не годится, но "паркетникам" будет в самый раз.

Конечно, и в есть свои недостатки. Например, такая система будет мешать опытному водителю при попытке вытащить застрявший автомобиль "в раскачку", не к месту притормаживая и сбрасывая "газ". Причем может настолько задушить мотор и колеса, что автомобиль вообще не сможет двигаться. Активным драйверам мешает управлять автомобилем в заносе, контролируя его тягой. С другой стороны, антипробуксовочная система с успехом выполняет функцию блокировки дифференциала, притормаживая разгруженное в повороте колесо и уравнивая таким образом скорости вращения колес, и позволяет максимально эффективно использовать крутящий момент двигателя.

Не все автоконцерны потакают прихотям покупателей, а потому делают систему неотключаемой. Но это "у них" она неотключаемая. А наши Кулибины, даже не изучая электросхему, решают проблему простым изъятием предохранителя. Впрочем, делать это мы не советуем. А если вы упорно считаете, что ASR мешает реализовать талант гонщика, напоминаем, что эта система используется в Formula

 

EBD (EBV)

Дальнейшее развитие ABS привело к появлению на современных автомобилях системы электронного распределения тормозных усилий. Эти системы всегда работают в паре, поэтому чаще всего в каталогах можно увидеть аббревиатуру ABS+EBD

Идея EBD выросла из того факта, что при резком торможении на неоднородном покрытии автомобиль начинает разворачивать. Это происходит оттого, что степень сцепления колес с дорогой разная, а тормозное усилие, передаваемое на колеса, одинаковое. Система EBD, используя датчики ABS, анализирует положение каждого колеса при торможении и строго индивидуально дозирует тормозное усилие на нем. При этом учитываются загрузка автомобиля и его положение относительно дорожного полотна.

Особенно заметна польза EBD при торможении в повороте. Именно EBD позволяет в такой ситуации тормозить, не теряя контроля над автомобилем. Без этой системы торможение в лучшем случае закончится сносом с траектории. Уверен, что по поводу полезности EBD споров не возникнет

 

Brake assistant (brake assist, BAS)

Еще один помощник, появившийся в результате "борьбы" за безопасность, называется brake assistant. Его предназначение - максимально возможное сокращение тормозного пути автомобиля при экстренном торможении. Как система этого добивается? Специальный датчик анализирует перемещение педали тормоза и силу давления на нее в момент торможения. "Придя к мнению", что водитель пытается экстренно затормозить, или, другими словами, в панике ударил по педали тормоза, brake assistant за несколько миллисекунд увеличивает давление в тормозной магистрали. Время торможения при этом значительно сокращается, а это - выигранные метры тормозного пути.

Стоит лишь добавить, что система распознает действительно панические действия водителя, или если он долгое время давит на педаль тормоза. Даже при достаточно резких, но "прогнозируемых" торможениях BAS в работу не вступает. В первую очередь эта система адресована слабому полу. Зачастую у женщин просто не хватает сил для экстренного торможения, и в нужную секунду руку помощи им подает BAS, "дожимая" педаль для максимального замедления

 

ESP (VDC, VSC, DSTC, DSC, ATTS, VSA, Stabilitrac)

Помните нашумевшую на весь мир историю с переворачиванием Mercedes-Benz A-класса? Если нет, то напомню. В 1997 году во время ездовой презентации автомобиль при прохождении маневра "переставка" перевернулся. После потока критики, обрушившейся на концерн, мерседесовское руководство во всеуслышанье объявило о том, что на все машины А-класса будет бесплатно установлена фирменная система динамической стабилизации. Именно применение электроники позволило окончательно решить проблемы с управляемостью. До этого случая ESP по заказу устанавливалась на автомобили S-класса еще в 1995 году.

ESP на сегодняшний день является высшей ступенью эволюции электронных систем активной безопасности, объединив в себе лучшие решения из перечисленных выше.

Принцип работы ESP основан на том, чтобы бороться со сносом и заносом автомобиля не только рулем и "газом", но и торможением одного или нескольких колес. Если машину сносит передней осью, система притормаживает внутреннее по отношению к повороту заднее колесо, придавая автомобилю избыточную поворачиваемость. Когда возникает угроза заноса, притормаживается внешнее переднее колесо. При сносе всех четырех колес ESP вычисляет, какое из них и в какой момент притормозить. Вместе с торможением система "сбрасывает" и обороты двигателя. Таким образом, используя исполнительные механизмы ABS и ASR, система способна притормаживать каждое колесо в отдельности.

Но для того, чтобы выполнить такую сложную работу, ESP недостаточно только датчиков ABS. Поэтому в автомобиле установлены дополнительные датчики. Один сообщает системе о том, в какую сторону и с какой скоростью вращается рулевое колесо. Еще два "жалуются" на угол поворота машины и уровень боковых ускорений. Показания этой компании датчиков позволяют моментально вычислить, что происходит с автомобилем, и привести в действие исполнительные механизмы.

Естественно, что и тут не обошлось без недостатков, если их можно назвать таковыми. Можно, например, пожаловаться на то, что система будет мешать опытному водителю, который просчитывает каждое свое движение на несколько шагов вперед. Но ESP не предсказывает будущее, а исправляет совершенные ошибки. Поэтому она не даст пройти поворот в управляемом заносе, вмешавшись в самый неподходящий момент. Но во всех остальных случаях ESP окажет действительно неоценимую помощь не только начинающему водителю.

В конце еще раз хочу обратить ваше внимание на то, что жалуются на работу перечисленных систем лишь активные драйверы. Но вспомните предназначение электронных помощников - активная БЕЗОПАСНОСТЬ, а не активный драйв. И тогда все сразу становится на свои места. И последнее, не раз уже сказанное: законы физики никакая электроника преодолеть не в состоянии.

 

IVD

IVD - собственная аббревиатура Ford, логическое развитие ABS.

 

 

Принцип действия АБС

Антиблокировочные системы (АБС) тормозов призваны обеспечить постоянный контроль за силой сцепления колес с дорогой и соответственно регулировать в каждый данный момент тормозное усилие, прилагаемое к каждому колесу. АБС производит перераспределение давления в ветвях гидропривода колесных тормозов так, чтобы не допустить блокирования колес и вместе с тем достичь максимальной силы торможения без потери управляемости автомобиля.

Основной задачей АБС является поддерживание в процессе торможения относительного скольжения колес в узких пределах вблизи λкp. В этом случае обеспечиваются оптимальные характеристики торможения. Для этой цели необходимо автоматически регулировать в процессе торможения подводимый к колесам тормозной момент.

Появилось много разнообразных конструкций АБС, которые решают задачу автоматического регулирования тормозного момента. Независимо от конструкции, любая АБС должна включать следующие элементы:

датчики, функцией которых является выдача информации, в зависимости от принятой системы регулирования, об угловой скорости колеса, давлении рабочего тела в тормозном приводе, замедлении автомобиля и др.

блок управления, обычно электронный, куда поступает информация от датчиков, который после логической обработки поступившей информации дает команду исполнительным механизмам

исполнительные механизмы (модуляторы давления), которые в зависимости от поступившей из блока управления команды снижают, повышают или удерживают на постоянном уровне давление в тормозном приводе колес Частота работы модулятора варьируется от 4 до 17 Герц

Процесс регулирования с помощью АБС торможения колеса – циклический. Связано это с инерционностью самого колеса, привода, а также элементов АБС. Качество регулирования оценивается по тому, насколько АБС обеспечивает скольжение тормозящего колеса в заданных пределах. При большом размахе циклических колебаний давления нарушается комфортабельность при торможении «дергание», а элементы автомобиля испытывают дополнительные нагрузки. Качество работы АБС зависит от принятого принципа регулирования, а также от быстродействия системы в целом. Быстродействие определяет циклическую частоту изменения тормозного момента. Важным свойством АБС должна быть способность приспосабливаться к изменению условий торможения (адаптивность) и, в первую очередь, к изменению коэффициента сцепления в процессе торможения.

Разработано большое число принципов (алгоритмов функционирования), по которым работают АБС. Они различаются по сложности, стоимости реализации и по степени удовлетворения поставленным требованиям. Среди них наиболее широкое применение получил алгоритм функционирования по замедлению тормозящего колеса.

Тормозная динамика автомобиля с АБС зависит от принятой схемы установки элементов этой системы. С точки зрения тормозной эффективности, наилучшей является схема с автономным регулированием каждого колеса. Для этого необходимо установить на каждое колесо датчик, а в тормозном приводе – модулятор давления и блок управления. Эта схема наиболее сложная и дорогостоящая.

 

Существуют более простые схемы АБС. На рисунке б показана схема АБС с регулируемым торможением двух задних колес. Для этого используются два колесных датчика угловых скоростей и один блок управления. В такой схеме применяют так называемое низко- или высокопороговое регулирование Низкопороговое регулирование предусматривает управление тормозящим колесом, находящимся в худших по сцеплению условиях («слабым» колесом). В этом случае тормозные возможности «сильного» колеса недоиспользуются, но создается равенство тормозных сил, что способствует сохранению курсовой устойчивости при торможении при некотором снижении тормозной эффективности. Высокопороговое регулирование, т. е. управление колесом, находящимся в лучших по сцеплению условиях, дает более высокую тормозную эффективность, хотя устойчивость при этом несколько снижается. «Слабое» колесо при этом способе регулирования циклически блокируется.

Еще более простая схема приведена на рисунке в. Здесь используются один датчик угловой скорости, размещенный на карданном валу, один модулятор давления и один блок управления. По сравнению с предыдущей эта схема имеет меньшую чувствительность.

На рисунке г приведена схема, в которой применены датчики угловых скоростей на каждом колесе, два модулятора, два блока управления. В такой схеме может применяться как низко-, так и высокопороговое регулирование. Часто в таких схемах используют смешанное регулирование (например, низкопороговое для колес передней оси и высокопороговое для колес задней оси). По сложности и стоимости эта схема занимает промежуточное положение между рассмотренными.

 

Процесс работы АБС может проходить по двух- или трехфазовому циклу.

При двухфазовом цикле:

первая фаза – нарастание давления

вторая фаза – сброс давления

При трехфазовом цикле:

первая фаза – нарастание давления

вторая фаза – сброс давления

третья фаза – поддержание давления на постоянном уровне

При установке на легковом автомобиле АБС возможны замкнутый и разомкнутый тормозные гидроприводы.

Замкнутый или закрытый (гидростатический) привод работает по принципу изменения объема тормозной системы в процессе торможения. Такой привод отличается от обычного установкой модулятора давления с дополнительной камерой. Модулятор работает по двухфазовому циклу:

 

Первая фаза – нарастание давления обмотка электромагнита 1 отключена от источника тока. Якорь 3 с плунжером 4 находится под действием пружины 2 в крайнем правом положении. Клапан 6 пружиной 5 отжат от своего гнезда. При нажатии на тормозную педаль давление жидкости, создаваемое в главном цилиндре (вывод II), передается через вывод I к рабочим тормозным цилиндрам. Тормозной момент растет.

Вторая фаза – сброс давления: блок управления подключает обмотку электромагнита 1 к источнику питания Якорь 3 с плунжером 4 перемещается влево, увеличивая при этом объем камеры 7. Одновременно клапан 6 также перемещается влево, перекрывая вывод I к рабочим тормозным цилиндрам колес. Из-за увеличения объема камеры 7 давление в рабочих цилиндрах падает, а тормозной момент снижается. Далее блок управления дает команду на нарастание давления, и цикл повторяется.

Разомкнутый или открытый тормозной гидропривод (привод высокого давления) имеет внешний источник энергии в виде гидронасоса высокого давления, обычно в сочетании с гидроаккумулятором.

 

В настоящее время отдается предпочтение гидроприводу высокого давления, более сложному по сравнению с гидростатическим, но обладающим необходимым быстродействием.

 

Двухконтурный тормозной привод с АБС

 

Рис. Двухконтурный тормозной привод с АБС:

1 – колесный датчик угловой скорости; 2 – модуляторы; 3 – блоки управления; 4 – гидроаккумуляторы; 5 – обратные клапаны; 6 – клапан управления; 7 – гидронасос высокого давления; 8 – сливной бачок

Тормозной привод имеет два контура, поэтому необходима установка двух автономных гидроаккумуляторов. Давление в гидроаккумуляторах поддерживается на уровне 14…15 МПа. Здесь применен двухсекционный клапан управления, обеспечивающий следящее действие, т. е. пропорциональность между усилием на тормозной педали и давлением в тормозной системе. При нажатии на тормозную педаль давление от гидроаккумуляторов передается к модуляторам 2, которые автоматически управляются электронными блоками 3, получающими информацию от колесных датчиков 1. На рисунке приведена схема двухфазового золотникового модулятора давления для тормозного гидропривода высокого давления. Рассмотрим фазы работы этого модулятора:

 

Фаза 1 нарастания давления: блок управления АБС отключает катушку соленоида от источника тока. Золотник и якорь соленоида усилием пружины перемещены в верхнее положение. При нажатии на тормозную педаль клапан управления сообщает гидроаккумулятор (вывод I) с нагнетательным каналом модулятора давления. Тормозная жидкость под давлением поступает через вывод II к рабочим цилиндрам тормозных механизмов. Тормозной момент растет.

Фаза 2 сброса давления: блок управления сообщает катушку соленоида с источником питания. Якорь соленоида перемещает золотник в нижнее положение. Подача тормозной жидкости в рабочие цилиндры прерывается: вывод II рабочих тормозных цилиндров сообщается с каналом слива III. Тормозной момент снижается. Блок управления дает команду на нарастание давления, отключая катушку соленоида от источника питания, и цикл повторяется.

Схема работы двухфазного модулятора высокого давления

 

Рис. Схема работы двухфазного модулятора высокого давления:

а – фаза 1; б – фаза 2

В настоящее время более распространены АБС, работающие по трехфазовому циклу. Примером такой системы является довольно распространенная система АБС 2S фирмы Бош.

 

Эта система встраивается в качестве дополнительной в обычную тормозную систему. Между главным тормозным цилиндром и колесными цилиндрами устанавливается нагнетательные (Н) и разгрузочные (Р) электромагнитные клапаны, которые либо поддерживает на постоянном уровне, либо снижают давление в приводах колес или в контурах. Электромагнитные клапаны приводятся в действие блоком управления, обрабатывающим информацию, поступающую от четырех колесных датчиков.

 

Блок управления, куда непрерывно поступают данные о скорости вращения каждого колеса и ее изменениях, определяет момент возникновения блокировки, затем, при необходимости, производит сброс давления, включает гидронасос, который возвращает часть тормозной жидкости обратно в питательный бачок главного цилиндра.

 

Функциональная схема АБС Bosch 2S

 

Рис. Функциональная схема АБС Bosch 2S:

1 – блок управления; 2 – модулятор; 3 – главный тормозной цилиндр; 4 – бачок; 5 – электрогидронасос; 6 — колесный цилиндр; 7 – ротор колесного датчика; 8 – колесный индуктивный датчик; 9 – сигнальная лампа; 10 – регулятор тормозных сил; Н/Р – нагнетательный и разгрузочный электромагнитные клапаны; —.-. входные сигналы БУ; — – — – выходные сигналы БУ; –––– тормозной трубопровод

В модуляторе АБС скомпонованы электромагнитные клапаны, гидронасос с аккумуляторами давления жидкости, реле электромагнитных клапанов и реле гидронасоса.

 

Электрогидравлический модулятор

 

Рис. Электрогидравлический модулятор:

1 – электромагнитные клапаны; 2 – реле гидронасоса; 3 – реле электромагнитных клапанов; 4 – электрический разъем; 5 – электродвигатель гидронасоса; 6 – радиальный поршневой элемент насоса; 7 – аккумулятор давления; 8 – глушитель

Работа системы происходит по программе, подразделяющейся на три фазы: 1 – нормальное или обычное торможение; 2 – удержание давления на постоянном уровне; 3 – сброс давления.

 

ПО ТЕМЕ: Ремонт тормозов

Фаза нормального торможения

 

При обычном торможении напряжение на электромагнитных клапанах отсутствует, из главного цилиндра тормозная жидкость под давлением свободно проходит через открытые электромагнитные клапаны и приводит в действие тормозные механизмы колес. Гидронасос не работает.

 

Фазы торможения

 

Рис. Фазы торможения:

а) фаза нормального торможения; б) фаза удержания давления на постоянном уровне; в) фаза сброса давления; 1 – ротор колесного датчика; 2 – колесный датчик; 3 – колесный (рабочий) цилиндр; 4 – электрогидравлический модулятор; 5 – электромагнитный клапан; 6 – аккумулятор давления; 7 – нагнетательный насос; 8 – главный тормозной цилиндр; 9 – блок управления

Фаза удержания давления на постоянном уровне

 

При появлении признаков блокировки одного из колес БУ, получив соответствующий сигнал от колесного датчика, переходит к выполнению программы цикла удержания давления на постоянном уровне путем разъединения главного и соответствующего колесного цилиндра. На обмотку электромагнитного клапана подается ток силой 2 А. Поршень клапана перемещается и перекрывает поступление тормозной жидкости из главного цилиндра. Давление в рабочем цилиндре колеса остается неизменным, даже если водитель продолжает нажимать на педаль тормоза.

 

Фаза сброса давления

 

Если опасность блокировки колеса сохраняется, БУ подает на обмотку электромагнитного клапана ток большей сипы: 5 А. В результате дополнительного перемещения поршня клапана открывается канал, через который тормозная жидкость сбрасывается в аккумулятор давления жидкости. Давление в колесном цилиндре падает. БУ выдает команду на включение гидронасоса, который отводит часть жидкости из аккумулятора давления. Педаль тормоза приподнимается, что ощущается по биению тормозной педали.

 

Индуктивный колесный датчик состоит из обмотки 5 и сердечника 4. Зубчатое колесо 6 имеет частоту вращения, равную частоте вращения колеса. При вращении колеса 6, выполненного из ферромагнитного железа, изменяется магнитный поток в зависимости от прохождения зубьев ротора, что приводит к изменению переменного напряжения в катушке. Частота изменения напряжения зависит от частоты вращения зубчатого колеса, т. е. частоты вращения колеса автомобиля. Воздушный зазор и размеры зубца оказывают большое влияние на амплитуду сигнала. Это позволяет определить положение колеса по интервалам между зубцами в пределах половины или трети. Сигнал от индуктивного датчика передается в электронный блок управления.

 

Индуктивный датчик

 

Рис. Индуктивный датчик:

1 – постоянный магнит; 2 – корпус; 3 – крепление датчика; 4 – сердечник; 5 – обмотка; 6 – зубчатое колесо

Индуктивные датчики могут крепиться на валу привода колеса, на валу привода конических шестерен для заднеприводных моделей автомобиля, на поворотных цапфах и внутри ступицы колеса.

 

Крепление индуктивного датчика на поворотной цапфе

 

Рис. Крепление индуктивного датчика на поворотной цапфе:

1 – тормозной диск; 2 – передняя ступица; 3 – защитный кожух; 4 – винт с внутренним шестигранным зацеплением; 5 – датчик; 6 – поворотная цапфа

Крепление индуктивного датчика внутри ступицы колеса

 

Рис. Крепление индуктивного датчика внутри ступицы колеса:

1 – фланец крепления колеса; 2 – шарики; 3 – кольцо датчика ABS; 4 – датчик; 5 – фланец крепления к подвеске.

Более совершенны активные датчики, применяемые для измерения частоты вращения колеса. Чувствительный элемент электронной ячейки 2 такого датчика изготовлен из материала, электропроводность которого зависит от напряженности магнитного поля. При вращении задающего диска 3 происходят изменения магнитного поля. Вызываемые изменяющимся магнитным полем колебания проходящего через чувствительный элемент тока преобразуются в электронной схеме в колебания напряжения, выводимого на внешние контакты датчика. При вращении задающего диска установленный около него датчик вырабатывает прямоугольные импульсы, частота которых соответствует частоте вращения диска. Преимуществом данного датчика по сравнению с ранее применяемыми системами является точная регистрация частоты вращения при ее снижении вплоть до остановки колеса.

 

Активный датчик

 

Рис. Активный датчик:

1 – корпус датчика; 2 – электронная ячейка датчика; 3 – задающий диск

Как правило, на щитке приборов должна находиться контрольная лампочка, которая должна гаснуть при работающем двигателе или если скорость автомобиля превышает 5 км/час. Она также загорается, если одно из колес пробуксовывает более 20 секунд или если электроснабжение выдает напряжение менее 10 вольт. Контрольная лампочка системы предупреждает водителя о том, что из-за неисправности системы произошло ее автоматическое отключение, при этом однако тормозная система продолжает функционировать как обычная тормозная система без АБС.

 

Аналогичный принцип работы применяется и для АБС 2Е фирмы Бош, однако в этой системе применяется уравнивающий цилиндр для уравнивания давления в тормозном приводе задних колес, который позволяет вместо четырех электромагнитных клапанов применять три клапана. В состав модулятора входят таким образом не четыре, а три электромагнитных клапана, уравнивающий цилиндр, двухпоршневой нагнетательный гидронасос, два аккумулятора давления, реле насоса и реле электромагнитных клапанов.

 

Система работает следующим образом. При обычном торможении тормозная жидкость под давлением из главного цилиндра поступает в рабочие цилиндры обоих передних колес и правого заднего колеса через три электромагнитных клапана, которые в исходном положении закрыты. В рабочий цилиндр левого заднего колеса тормозная жидкость подается через открытый перепускной клапан уравнивающего цилиндра. Когда возникает опасность блокировки одного из передних колес, БУ выдает команду на закрытие соответствующего электромагнитного клапана, предотвращая повышение давления в колесном цилиндре. Если опасность блокировки колеса не устранена, к электромагнитному клапану подводится ток, обеспечивающий открытие участка магистрали между рабочим цилиндром колеса и аккумулятором давления. Давление в приводе тормоза падает, после чего БУ выдает команду на включение гидронасоса, который перегоняет жидкость в главный цилиндр через уравнивающий цилиндр.

 

АБС 2Е фирмы Бош в фазе обычного торможения

 

Рис. АБС 2Е фирмы Бош в фазе обычного торможения:

1 – главный тормозной цилиндр; 2 – электромагнитный клапан; 3 – аккумулятор давления; 4 – электромагнитный клапан заднего моста; 5 – нагнетательный насос; 6 – перепускной клапан; 7 – поршень уравнительного цилиндра; Ппр – переднее правое колесо; Пл – переднее левое колесо; Зпр – заднее правое колесо; Зл – заднее левое колесо

Когда возникает опасность блокировки одного из задних колес, давление тормозной жидкости будет регулироваться в обоих задних тормозах одновременно, с тем чтобы не допустить движения задних колес юзом.

 

Электромагнитный клапан привода правого заднего тормоза устанавливается в положение удержания постоянного давления и перекрывает участок магистрали между главным цилиндром и колесным цилиндром. На противоположные торцевые поверхности поршня 7 уравнивающего цилиндра начинает действовать давление различной величины, вследствие чего поршень со штоком переместится в сторону наименьшего давления (на рисунке – вверх) и закроет клапан 6, разъединив главный цилиндр и колесный цилиндр левого заднего тормоза. Поршень уравнивающего цилиндра из-за образующейся разницы давления в рабочих полостях над ним и под ним всякий раз устанавливается в такое положение, при котором давление в приводах обоих задних тормозов одинаково.

 

Если сохраняется опасность блокировки задних колес, БУ запитывает электромагнитный клапан в контуре задних колес током в 5 А. Золотник электромагнитного клапана перемещается и открывает участок контура между рабочим цилиндром правого заднего тормоза и аккумулятором давления жидкости. Давление в контуре уменьшается. Гидронасос нагнетает тормозную жидкость в главный цилиндр через уравнивающий цилиндр. В результате снижения давления в пространстве над поршнем 7 происходит очередное его перемещение, сжимается пружина центрального клапана, увеличивается объем пространства под верхним поршнем. Давление в левом колесном тормозном цилиндре снижается. Поршень уравнивающего цилиндра вновь устанавливается в положение, соответствующее равенству давлений в приводах обоих задних тормозов. После устранения угрозы блокировки колес электромагнитный клапан возвращается в исходное положение. Поршень уравнивающего цилиндра под действием пружины также занимает исходное нижнее положение.

 

Более совершенной является АБС 5-й серии фирмы Бош с блоком 10, которая относится к новому поколению систем АБС, представляя собой замкнутую гидравлическую систему, не имеющую канала для возврата тормозной жидкости в бачок, питающий главный тормозной цилиндр. Схема этой системы показана на примере автомобиля Вольво S40.

 

Схема АБС 5-й серии фирмы Бош

 

Рис. Схема АБС 5-й серии фирмы Бош:

1 – обратные клапаны; 2 – клапан плунжерного насоса; 3 – гидроаккумулятор; 4 – камера подавления пульсации в системе; 5 – электродвигатель с эксцентриковым плунжерным насосом; 6 – бачок для тормозной жидкости; 7– педаль рабочего тормоза; 8 – усилитель; 9 – главный тормозной цилиндр; 10 – блок АБС; 11 – выпускные управляемые клапаны; 12 – впускные управляемые клапаны; 13 – дросселирующий клапан; 14-17 – тормозные механизмы

Электронные и гидравлические компоненты смонтированы как единый узел. В их число входят, кроме указанных в схеме: реле для включения электродвигателя плунжерного насоса 5 и реле включения впускных 12 и выпускных 11 клапанов. Внешними компонентами являются: сигнальная лампа работы АБС в приборной панели, которая загорается в случае возникновения неисправности в системе, а также при включении зажигания в течение четырех секунд; выключатель стоп-сигнала и датчики скорости вращения колес. Блок имеет вывод на диагностический разъем.

 

Дросселирующий клапан 13 устанавливается для снижения тормозного усилия на задних колесах с целью избежания их блокировки. В связи с тем, что тормозная система имеет настройку по более «слабому» заднему колесу (это означает, что давление тормозов задних колес одинаковое, а его величина устанавливается по наиболее близкому к блокированию колесу), дросселирующий клапан устанавливается один на контур.

 

Тормозные механизмы 14-17 включают тормозные диски и однопоршневые суппорты с плавающей скобой и тормозными колодками, оборудованными скобами контроля износа фрикционных накладок. Тормозные механизмы задних колес аналогичны передним, но имеют сплошные тормозные диски (на передних — вентилируемые) и исполнительный механизм стояночного тормоза, вмонтированный в суппорт.

 

При нажатии педали 7 тормоза ее рычаг освобождает кнопку выключателя стоп-сигнала, который, срабатывая, включает лампочки стоп-сигналов и приводит АБС в дежурное состояние. Движение педали через шток и вакуумный усилитель 8 передается на поршни главного цилиндра 9. Центральный клапан во вторичном поршне и манжета первичного поршня перекрывают сообщение контуров с бачком 6 для тормозной жидкости. Это приводит к росту давления в тормозных контурах. Оно действует на поршни тормозных цилиндров в тормозных суппортах. В результате этого тормозные колодки прижимаются к дискам. При отпускании педали все детали возвращаются в исходное положение.

 

Если при торможении одно из колес близко к блокировке (о чем сообщает датчик частоты вращения), блок управления перекрывает впускной клапан 12 соответствующего контура, что препятствует дальнейшему росту давления в контуре независимо от роста давления в главном цилиндре. В то же время начинает работать гидравлический плунжерный насос 5. Если вращение колеса продолжает замедляться, блок управления открывает выпускной клапан 11, позволяя тормозной жидкости возвратиться в гидроаккумуляторы 3. Это приводит к уменьшению давления в контуре и позволяет колесу вращаться быстрее. Если вращение колеса чрезмерно ускоряется (по сравнению с другими колесами) для повышения давления в контуре блок управления перекрывает выпускной клапан 11 и открывает впускной 12. Тормозная жидкость подается из главного тормозного цилиндра и с помощью плунжерного насоса 5 из гидроаккумуляторов 3. Демпферные камеры 4 сглаживают (подавляют) пульсации, возникающие в системе при работе плунжерного насоса.

 

Выключатель стоп-сигнала информирует модуль управления о торможении. Это позволяет модулю управления более точно контролировать параметры вращения колес.

 

Диагностический разъем служит для подсоединения Volvo System Tester при выполнении диагностики.

 

Если автомобиль оборудован системой DSA (система динамической стабилизации), то модуль управления системой DSA получает данные о частоте вращения колес, которые необходимы для измерения пробуксовывания. Эту информацию модуль управления системой DSA получает с модуля управления системой АБС. Для этой цели служат три коммуникационные линии. Система DSA не использует тормоза для контроля пробуксовывания.

 

Внутренние реле (для насоса и клапанов) имеют отдельные соединения, защищенные плавкими предохранителями.

 

При включении зажигания система проверяет электрическое сопротивление всех компонентов. Во время этой проверки горит сигнальная лампа. После завершения проверки (4 с) лампа должна погаснуть.

 

При движении автомобиля выполняется проверка электродвигателя насоса, его реле, впускных и выпускных клапанов на скорости 6 км/ч. На скорости 40 км/ч осуществляется проверка работы колесных датчиков. Во время работы системы насос функционирует в непрерывном режиме.

 

Во время движения в дождь или снегопад при скорости движения более 70 км/час и включенном стеклоочистителе лобового стекла тормозные накладки передних тормозов периодически (каждые 185 секунд) кратковременно (на 2,5 секунды) прижимаются к тормозным дискам с минимальным давлением (0,5…1,5 кгс/см2). В результате этого накладки и диски очищаются, и улучшается эффективность торможения






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных