Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Порядок проведения расчета




4.1.1.1 Производится экспертный выбор сценария или сценариев пожара, при которых ожидаются наихудшие последствия для находящихся в здании людей.

4.1.1.2 Формулировка сценария развития пожара включает в себя следующие этапы:

выбор места нахождения первоначального очага пожара и закономерностей его развития;

задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);

задание параметров окружающей среды и начальных значений параметров внутри помещений.

4.1.1.3 Выбор места нахождения очага пожара производится экспертным путем. При этом учитывается количество горючей нагрузки, ее свойства и расположение, вероятность возникновения пожара, возможная динамика его развития, расположение эвакуационных путей и выходов.

4.1.1.4 Скорость выгорания определяется формулами:

где yуд – удельная скорость выгорания (для жидкостей установившаяся), кг/(с×м2);

v скорость распространения пламени, м/с;

b ширина полосы горючей нагрузки, м;

tст время стабилизации горения горючей жидкости, с;

F площадь очага пожара, м2.

4.1.1.5 Критическое время по каждому из опасных факторов пожара определяется как время достижения этим фактором предельно допустимого значения на путях эвакуации на высоте 1,7 м от пола.

4.1.1.6 Предельно допустимые значения по каждому из опасных факторов пожара составляют:

по повышенной температуре – 70оС;

по потере видимости – 20 м;

по пониженному содержанию кислорода – 0,226 кг/м3;

по каждому из токсичных газообразных продуктов горения
(СО2 – 0,11 кг/м3; СО – 1,16·10-3 кг/м3; HCL – 23·10-6 кг/м3).

4.1.1.7 Время блокирования определяется по формуле:

.

4.1.1.8 Параметры горючей нагрузки принимаются в соответствии с [5, 6].

4.1.1.9 В зависимости от вида модели расчета времени блокирования путей эвакуации представляется методика Так как помещения объекта защиты имеют сложную конфигурацию, большое количество внутренних преград, а также то, что один из геометрических размеров гораздо больше (меньше) остальных размеров, то при определении критических значений ОФП по сценариям №1-2 использовалась полевая модель расчета времени блокирования путей эвакуации. Указывается реальная обстановка на объекте

Основой для полевых моделей пожаров являются уравнения, выражающие законы сохранения массы, импульса, энергии и масс компонентов в рассматриваемом малом контрольном объеме.

Уравнение сохранения массы:

............................................................................................. (6.43)

Уравнение сохранения импульса:

.................................................... (6.44)

Для ньютоновских жидкостей, подчиняющихся закону Стокса, тензор вязких напряжений определяется формулой:

.................................................................. (6.45)

Уравнение энергии:

,................................. (6.46)

где - статическая энтальпия смеси;

- теплота образования k-го компонента;

- теплоемкость смеси при постоянном давлении;

- радиационный поток энергии в направлении .

Уравнение сохранения химического компонента k:

.......................................... (6.47)

Для замыкания системы уравнений (6.43) - (6.47) используется уравнение состояния идеального газа. Для смеси газов оно имеет вид:

,..................................................................................... (6.48)

где - универсальная газовая постоянная;

- молярная масса k-го компонента.

4.1.1.9 Так как помещения объекта защиты содержат развитую систему помещений малого объема простой геометрической конфигурации, а также то, что размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз), то при определении критических значений ОФП по сценариям №1-2 использовалась интегральная математическая модель расчета газообмена в здании, при пожаре. Указывается реальная обстановка на объекте

Для расчета распространения продуктов горения по зданию составляются и решаются уравнения аэрации, тепло- и массообмена как для каждого помещения в отдельности, так и для всего здания в целом.

Уравнения движения, связывающие значения перепадов давлений на проемах с расходами газов через проемы, имеют вид:

,...................................................................... (П6.3)

где - расход газов через проем между двумя (j-м и i-м) смежными помещениями, кг/с;

- коэффициент расхода проема ( для закрытых проемов и для открытых);

F - площадь сечения проема, ;

- плотность газов, проходящих через проем, ;

- средний перепад полных давлений между j-м и i-м помещением, Па.

Направление (знак) расхода определяется знаком разности давлений . В зависимости от этого плотность принимает различные значения.

Знак расхода газов (входящий в помещение расход считается положительным, выходящий - отрицательным) и значение зависят от знака перепада давлений:

................................................................. (П6.4)

Для прогнозирования параметров продуктов горения (температуры, концентраций токсичных компонентов продуктов горения) в помещениях многоэтажного здания на этажах, расположенных выше этажа, на котором может возникнуть пожар, рассматриваются процессы распространения продуктов горения в вертикальных каналах (лестничные клетки, шахты лифтов, вентканалы и т.п.).

Вертикальную шахту по высоте разделяют на зоны, которые представляют узлы в гидравлической схеме здания. Зона по высоте может охватывать несколько этажей здания. В этом случае расход газа между зонами можно выразить формулой вида:

,....................................................................................................... (П6.5)

где - характеристика гидравлического сопротивления на границе зон;

F - площадь поперечного сечения шахты;

k - коэффициент (допускается принимать равным 0,05 );

g=9,81 - ускорение свободного падения;

- перепад давлений между узлами.

Здание представляют в виде гидравлической схемы, узлы которой моделируют помещения, а связи - пути движения продуктов горения и воздуха. Каждое помещение здания описывается системой уравнений, состоящей из уравнения баланса массы, уравнения сохранения энергии и уравнения основного газового закона (Менделеева-Клайперона).

Уравнение баланса массы выражается формулой:

,....................................................................... (П6.6)

где - объем помещения, ;

t - время, с;

- сумма расходов, входящих в помещение, кг/с;

- сумма расходов, выходящих из помещения, кг/с;

- скорость выгорания пожарной нагрузки, кг/с.

Уравнение сохранения энергии выражается формулой:

,...................... (П6.7)

где , - удельная изохорная и изобарная теплоемкости, ;

- температуры газов в i-м и j-м помещениях, К;

- количество тепла, выделяемого в помещении при горении, кВт;

- тепловой поток, поглощаемый конструкциями и излучаемый через проемы, кВт.

Для помещения очага пожара величина определяется по формуле:

,

где - коэффициент полноты горения;

- низшая теплота сгорания, кДж/кг;

I - энтальпия газифицированной горючей нагрузки.

Для остальных помещений .

Коэффициент полноты горения определяется по формуле:

,............................................................................. (П6.8)

где - коэффициент полноты горения в режиме пожара, регулируемом горючей нагрузкой, определяемый формулой:

......................................................................... (П6.9)

Коэффициент К рассчитывается по формуле:

,......................................................... (П6.10)

где ;

- начальная концентрация кислорода в помещении очага пожара;

-текущая концентрация кислорода в помещении очага пожара.

Уравнение Менделеева-Клайперона выражается формулой:

,................................................................................................... (П6.11)

где - давление газа в j-м помещении, Па;

- температура газа в j-м помещении, К;

R = 8,31 - универсальная газовая постоянная, ;

М - молярная масса газа, моль.

Параметры газа в помещении определяются из уравнения баланса масс отдельных компонентов продуктов горения и кислорода и уравнения баланса оптической плотности дыма.

Уравнение баланса масс отдельных компонентов продуктов горения и кислорода:

,................................... (П6.12)

где , - концентрация L-го компонента продуктов горения в i-м и j-м помещениях, кг/кг;

- количество L-го компонента продуктов горения (кислорода), выделяющегося (поглощающегося) при сгорании одного килограмма пожарной нагрузки, кг/кг.

Уравнение баланса оптической плотности дыма:

,....................................... (П6.13)

где , - оптическая плотность дыма в i- м и j-м помещениях, ;

- дымообразующая способность пожарной нагрузки, .

Оптическая плотность дыма при обычных условиях связана с расстоянием предельной видимости в дыму формулой:

........................................................................................................ (П6.14)

Для помещений без источника тепла система уравнений (П6.6), (П6.7) и (П6.8) упрощается и представляется в виде:

,............................................. (П6.15)

где .

Первое уравнение связывает перепады давлений на соединяющих помещение проемах с расходом газа через эти проемы. Второе - выражает постоянство объема для данного помещения. Таким образом, для всего здания требуется решать систему, состоящую из нелинейных уравнений вида (П6.12) и линейных уравнений вида (П6.13). Здесь и - соответственно число горизонтальных и вертикальных связей на этаже; - число узлов; - число этажей.

Система уравнений включающая в себя уравнения (П6.6), (П6.7) для помещения очага пожара и (П6.12), (П6.13) для остальных помещений и уравнение (П6.11), описывающая гидравлическую схему здания, решается численно методом итерации в совокупности с методом секущих.

Основные уравнения для определения температуры газа и концентрации продуктов горения в помещениях здания получены из уравнений сохранения энергии и массы.

Температура газа в помещении, где отсутствует очаг пожара определяется из уравнения теплового баланса, которое можно получить из уравнения сохранения энергии (П6.7). Формула для определения температуры газа в j-м помещении здания в "n"-ый момент времени:

, (П6.16)

где - сумма источников (стоков) тепла в объеме j-го помещения и тепла, уходящего в ограждающие конструкции;

- приведенный коэффициент теплоотдачи;

- начальная температура в помещении;

- площадь поверхности ограждающих конструкций в j-м помещении.

Коэффициент теплоотдачи может быть рассчитан по эмпирической формуле:

...................................... (П6.17)

Концентрация отдельных компонентов газовых смесей в помещениях здания вычисляются из уравнения баланса массы данного компонента (П6.12). Концентрация L-го компонента продуктов горения в j-м помещении в "n"-й момент времени определяется уравнением:

. (П6.18)

Оптическая концентрация дыма в помещениях определяется из балансового уравнения (П6.19). Натуральный показатель ослабления среды в j-ом помещении в "n"-й момент времени определяется уравнением:

. (П6.19)






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных