ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Показательная функция, ее свойства и график
Функцию вида y=ax, где а>0, a?1, х – любое число, называют показательной функцией. Область определения показательной функции: D (y)=R – множество всех действительных чисел. Область значений показательной функции: E (y)=R+ - множество всех положительных чисел. Показательная функция y=ax возрастает при a>1. Показательная функция y=ax убывает при 0<a<1. Справедливы все свойства степенной функции:
а0=1 Любое число (кроме нуля) в нулевой степени равно единице. а1=а Любое число в первой степени равно самому себе. ax?ay=ax+y При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают. ax:ay=ax- y При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя. (ax)y=axy При возведении степени в степень основание оставляют прежним, а показатели перемножают (a?b)x=ax?by При возведении произведения в степень возводят в эту степень каждый из множителей. (a/b)x=ax/by При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби. а-х=1/ax (a/b)-x=(b/a)x. Примеры.
1) Построить график функции y=2x. Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=20=1; Точка А.
x=1, y=21=2; Точка В.
x=2, y=22=4; Точка С.
x=3, y=23=8; Точка D.
x=-1, y=2-1=1/2=0,5; Точка K.
x=-2, y=2-2=1/4=0,25; Точка M.
x=-3, y=2-3=1/8=0,125; Точка N.
Большему значению аргумента х соответствует и большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.
2) Построить график функции y=(1/2)x. Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=(?)0=1; Точка A.
x=1, y=(?)1=?=0,5; Точка B.
x=2, y=(?)2=?=0,25; Точка C.
x=3, y=(?)3=1/8=0,125; Точка D.
x=-1, y=(?)-1=21=2; Точка K.
x=-2, y=(?)-2=22=4; Точка M.
x=-3, y=(?)-3=23=8; Точка N.
Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)x убывает на всей своей области определения: D (y)=R, так как основание функции 0<(1/2)<1.
3) В одной координатной плоскости построить графики функций:
y=2x, y=3x, y=5x, y=10x. Сделать выводы.
График функции у=2х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.
Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля (E (y)=R+).
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.
Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.
4) В одной координатной плоскости построить графики функций:
y=(1/2)x, y=(1/3)x, y=(1/5)x, y=(1/10)x. Сделать выводы.
Смотрите построение графика функции y=(1/2)x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.
Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.
Чем меньше основание а (при 0<a<1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.
Все эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.
Решить графически уравнения:
1) 3x=4-x.
В одной координатной плоскости построим графики функций: у=3х и у=4-х.
Графики пересеклись в точке А(1; 3).
Ответ: 1.
2) 0,5х=х+3.
В одной координатной плоскости строим графики функций: у=0,5х
(y=(1/2)x)
и у=х+3.
Графики пересеклись в точке В(-1; 2).
Ответ: -1.
Найти область значений функции: 1) y=-2x; 2) y=(1/3)x+1; 3) y=3x+1-5.
Решение.
1) y=-2x
Область значений показательной функции y=2x – все положительные числа, т.е.
0<2x<+?. Значит, умножая каждую часть двойного неравенства на (-1), получаем:
—?<-2x<0.
Ответ: Е(у)=(-?; 0).
2) y=(1/3)x+1;
0<(1/3)x<+?, тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:
0+1<(1/3)x+1<+?+1;
1<(1/3)x+1<+?.
Ответ: Е(у)=(1; +?).
3) y=3x+1-5.
Запишем функцию в виде: у=3х?3-5.
0<3x<+?; умножаем все части двойного неравенства на 3:
0?3<3x?3<(+?)?3;
0<3x?3<+?; из всех частей двойного неравенства вычитаем 5:
0-5<3x?3-5<+?-5;
— 5<3x?3-5<+?.
Ответ: Е(у)=(-5; +?).
Степени
Корни
Логарифмы
y = logb(x) тогда и только тогда, когда x=b y
удобно пользоваться легко запоминающейся формулой:
где в правой части логарифмы при любом (одном и том же основании)
Свойства:
Не нашли, что искали? Воспользуйтесь поиском:
|