Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Регуляция по типу обратной связи (аллостерическая регуляция активсти ферментов).

Контрольная работа № 2.

Тема: ВИТАМИНЫ, ФЕРМЕНТЫ.

Витамины.

1.Понятие о витаминах и использование их в медицинской практике. Заслуги ученых в развитии учения о витаминах.

Витамины – это низкомолекулярные органические вещества разнообразной химической природы, являющиеся незаменимыми компонентами пищи, но не выполняющие структурные и энергетические функции. Впервые на важную роль этих соединений указал русский ученый Н.И. Лунин. В 1881 г. в опытах на мышах он установил, что искусственно составленная для них диета из белков, жиров, углеводов и минеральных веществ в тех же пропорциях, что и в естественном молоке, приводила мышей к гибели. Он сделал вывод, что в естественных продуктах содержатся какие-то дополнительные вещества, необходимые для нормальной жизнедеятельности. Эти вещества получили название добавочных факторов, позднее – витаминов.

В 1912 г. К. Функ впервые выделил витамин В1 из экстрактов оболочек риса и дал название витаминам (''Vita'' – жизнь).

Витамины назначают при самых различных заболеваниях. В одних случаях их применяют в качестве основного метода лечения (при авитаминозах и гиповитаминозах), они составляют часть комплексной терапии. Отмечается также важная роль витаминов в уменьшении или снятии побочного действия ряда антибиотиков и химиопрепаратов, в повышении иммунологической реактивности организмы, во взаимодействии с гормонами.

2. Классификация и номенклатура витаминов.

Жирорастворимые:

• Витамин А (ретинол, ретиноловая кислота и ретинал)

• Витамин D (Холекальциферол)

• Витамин Е (токоферол, токотриенол)

• Витамин К (менахинон,филлохинон)

 

Водорастворимые:

• Витамин С (аскорбиновая кислота)

• Витамин В1 (тиамин)

• Витамин В2 (лактофлавин, рибофлавин)

• Витамин В3 (никотиновая кислота, ниацин, ниацинамид, витамин РР)

• Витамин В5 (пантотеновая кислота)

• Витамин В6 (пиридоксин, пиридоксамин, пиридоксаль)

• Витамин В7 (биотин, витамин Н)

• Витамин В9 (фолиевая кислота, витамин М)

• Витамин В12 (цианокобаламин, оксикобаламин, метилкобаламин)

 

Витаминоподобные вещества

Существуют вещества, нехватка которых, в отличие от витаминов, не провоцирует какие-либо выраженные нарушения в организме. Это витаминоподобные вещества, на данный момент их 10:

• Витамин N (липоевая кислота)

• Коэнзим Q10 (убихинон)

• Витамин U (S-метилметионин)

• Витамин F (полиненасыщенные жирные кислоты)

• Витамин В4 (холин)

• Витамин В8 (инозит)

• Витамин В10 (парааминобензойная кислота, витамин Н1, ПАБК, РАВА)

• Витамин В11 (карнитин)

• Витамин В13 (оротовая кислота)

• Витамин В15 (пангамовая кислота)

В основу классификации положен принцип, связанный с физико-химическими свойствами:

1. жирорастворимые: А, Д, Е, К.

2. водорастворимые: С, В1, В2, В6, В12, Вс, Н, РР, Р, В3.

3. витаминоподобные: полиненасыщенные высшие жирные кислоты, ПАБК, убихинон, холин, инозит и др.

Их источники:

- продукты растительного происхождения

- продукты животного происхождения

- микрофлора кишечника.

Жирорастворимыми витаминами наиболее богаты продукты животного происхождения. Ряд витаминов вырабатывается микрофлорой тонкого кишечника, например, витамины К, В12, холин.

Провитамины – это предшественники витаминов, или неактивные формы витаминов.

Известно, что провитамином витамина А являются α-, β-, γ-каротины и под воздействием каротиназы кишечника они активируются и превращаются в витамин А.

Эргостерин УФО вит. Д2

 

7-дегидрохолестерол УФО вит. Д3

3.Понятие о гипо-, гипер- и авитаминозах, причинах их возникновения.

Гиповитаминозы – состояния, которые возникают вследствие недостаточности содержания какого-либо витамина в организме, при этом отсутствует четкая клиническая картина.

Симптомы: слабость, головная боль, быстрая утомляемость, низкая сопротивляемость по отношению к инфекциям.

Авитаминозы – заболевания, связанные с отсутствием того или иного витамина в организме. Авитаминозы являются следствием гиповитаминозов и имеют четкую клиническую картину, характерную для данного авитаминоза.

Причины возникновения гипо- и авитаминозов делятся на 2 группы:

1. Экзогенные (алиментарная форма), связанная с недостаточным содержанием или отсутствием витаминов в пище в связи:с:

- однообразным питанием;

- неправильным хранением и кулинарной обработкой продуктов;

- спецификой трудовой деятельности;

- возрастом;

- физиологическим состоянием.

2. Эндогенные (вторичные авитаминозы) связаны с:

- частичным разрушением в ЖКТ (низкая секреция НСl) – разрушение витамина РР и других водорастворимых витаминов;

- нарушением выработки внутреннего «фактора Касла», обеспечивающего всасывание витамина В12 (злокачественная анемия);

- нарушением всасывания жиров (нарушение функции печени; закупорка желчных протоков), нарушением функций поджелудочной железы;

- с назначением сульфаниламидных препаратов; при этом угнетается не только болезнетворная, но и полезная микрофлора (дисбактериоз);

- изменением на генетическом уровне – нарушение биосинтеза белков, которые участвуют во всасывании, транспорте витаминов и обрзлвании сложных белков (витаминрезистентные состояния).

Гипервитаминозы – заболевания, связанные с избытком какого-либо витамина в организме. Их часто вызывают жирорастворимые витамины, способные накапливаться в организме. В настоящее время наблюдаются редко.

Механизм действия жирорастворимых витаминов объясняется тем, что они влияют на генетический аппарат клетки, то есть на биосинтез белков.

4.Механизм действия водорастворимых и жирорастворимых витаминов.

Связь витаминов с ферментами можно рассмотреть на примере водорастворимых витаминов. Они входят в состав ферментов в активных (коферментных) формах и участвуют в углеводном, белковом, липидном и минеральном обменах.

Например:

Витамин Коферментная форма Тип катализируемой реакции
В1 Тиаминдифосфат (ТДФ) Декарбоксилирование α-кетокислот
В2 Флавинадениндинуклеотид (ФАД,ФМН) Окислительно-восстановительные реакции
РР Никотинамиддинуклеотид (НАД) никотинамиддинуклеотидфосфат (НАДФ) Окислительно-восстановительные реакции
В6 Пиридоксальфосфат (ПФ) фосфопиридоксальаминфосфат В реакциях трансаминирования и декарбоксилирования аминокислот
Н Биотин Перенос СО2 в реакциях карбоксилирования

Это является и механизмом действия водорастворимых витаминов.

5.Что такое провитамины, условия превращения их в активные формы.

Провитамины – это предшественники витаминов, или неактивные формы витаминов.

Известно, что провитамином витамина А являются α-, β-, γ-каротины и под воздействием каротиназы кишечника они активируются и превращаются в витамин А.

Эргостерин УФО вит. Д2

 

7-дегидрохолестерол УФО вит. Д3

6.Витамин А, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин А – ретинол – антиксерофтальмический.

Основные источники: молоко, яйца, печень, красномякотные фрукты и овощи. Суточная потребность 2,7 мг.

В клетках, органах-мишенях есть специальные цитозольные рецепторы, распознающие и связывающие ретинол (ретинол-связывающий белок). Он проникает в ядро, где вызывает репрессию генов, регулируя, таким образом, биосинтез белков.

Ретинол обеспечивает рост, дифференцировку тканей; ретиналь – важен для нормального функционирования сетчатой оболочки глаза. Витамин А участвует в синтезе белков гликопротеинов и родопсина.

Авитаминоз витамина А – ночная слепота (гемералопия), нарушение темневой адаптации. Возможна задержка роста в молодом возрасте, избыточное ороговение кожи, вызванное задержкой смены эпителия, ксерофтальмия – сухость конъюнктивы глаза, помутнение роговицы и ее размягчение (кератомаляция), нарушение функции размножения.

7.Витамин D, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин Д – кальциферол – антирахитический.

Основные источники – продукты животного и растительного происхождения: печень, сливочное масло, молоко, растительные масла. Наиболее богат витамином Д жир печени рыб. Суточная потребность для детей и взрослых – 0,01-0,025 мг. По химической природе относится к стеринам. Наиболее активны: витамин Д2 – эргокальциферол, витамин Д3 – холекальциферол.

Витамин Д2 образуется из растительного предшественника (провитамина) – эргостерина, вит. Д3 – из 7-дегидрохолестерина, синтезирующегося в коже человека и животных после облучения предшественников ультрафиолетовым светом.

Пищевой кальциферол в тонком кишечнике всасывается в присутствии желчных кислот. Сначала в печени осуществляется превращение предшественников в активную форму – 1,25-дигидрокальциферол.

Витамин Д регулирует обмен кальция и фосфора.

- усиление транспорта кальция через эпителий слизистой оболочки тонкого кишечника при всасывании с участием Са-связывающего белка, кальций-зависимой АТФ-азы и ионов Na,

- мобилизация кальция из костной ткани,

- реабсорбция кальция и фосфора в почечных канальцах.

В целом действие витамина Д выражается в повышении ионов Са2+ и фосфатов в крови.

Авитаминоз проявляется в рахите – заболевании, обусловленным отсутствием последней стадии образования кости – отложение минеральных веществ на матриксе кости. Это проявляется в различных деформациях скелета – саблевидные голени, вывернутые внутрь колени, килевидная грудь, позднее заращение родничка.

Гипервитаминозы сопровождаются деминерализацией костей и их переломами, а также вследствие повышения концентрации кальция и фосфора, кальцификацией мягких тканей и образование камней в почках.

 

8.Витамин РР, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин РР (никотиновая кислота) синтезируется кишечными бактериями из триптофана. Никотиновая кислота и ее амид играют важную роль в организме, так как никотинамид является коферментом пиридиновых ферментов (НАД и НАДФ), которые участвуют в окислительно-восстановительных реакциях. В процессе биологического окисления НАД и НАДФ играют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами.

При дефиците витамина РР развивается пеллагра. Для этого заболевания наиболее характерными признаками являются: симптом трёх «Д» (дерматиты, диарея, деменция). Дерматиты чаще всего возникают на тех участках, которые подвержены влиянию прямых солнечных лучей (тыльная поверхность кистей рук, шея, лицо), при этом кожа становится красной, затем коричневой и шершавой. Диарея – сопровождается анорексией, тошнотой, рвотой, болью в области живота. Специфическими для пеллагры являются также стоматиты, гингивиты, поражения языка. Деменция – нарушение нервной деятельности с симптомами головной боли, головокружением, повышенной раздражимостью, депрессией. Суточная потребность в витамине РР 18 мг.

9.Витамин С, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин С – аскорбиновая кислота – антискорбутный.

Основные источники: фрукты и овощи (грецкий орех, грейпфрут, черная смородина, шиповник, капуста, клюква, перец сладкий). Суточная потребность 50-100 мг. Всасывается путем простой диффузии на протяжении ЖКТ, транспортируется кровью частично в свободном, частично в связанном состоянии. В тканях окисляется до дегидроаскорбиновой, дикетогулоновой, щавелевой и др. кислот. Неизмененная аскорбиновая кислота и ее метаболиты выводятся с мочой.

Основная функция – участие в окислительно-восстановительных реакциях, а также в следующих превращениях:

1. Гидроксилирование триптофана в положении 5 (синтез серотонина).

2. Гидроксилирование ДОФА (образование норадреналина).

3. Гидроксилирование стероидов (синтез кортикостероидов).

4. Гидроксилирование пролина и лизина в проколлагене (синтез коллагена).

5. Образование коферментных форм фолацина.

Кроме того, аскорбиновая кислота участвует в обмене железа: в кишечнике обеспечивает восстановление трехвалентного в двухвалентное – обязательное условие всасывания железа; высвобождает железо из связанной транспортной формы в крови (из комплекса с трансферрином), что ускоряет его поступление в ткани.

Авитаминозом витамина С является цинга. Проявления: рыхлость десен, расшатывание зубов, подкожные точечные кровоизлияния (петехии), анорексия, анемия, замедленное заживление ран, слабость, головная боль, одышка, боль в сердце, отеки, боли в ногах.

Все эти изменения обусловлены нарушением образования коллагена и хондроитинсульфата, ростом сосудистой проницаемости, снижением свертываемости крови. Анемия обусловлена нарушением образования коферментных форм фолацина, снижением синтеза ДНК в кроветворных клетках. Нарушен синтез одонто- и остеобластов.

 

10.Витамин В1, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Рассматривая каждый витамин в отдельности, необходимо подчеркнуть, что витамины группы В тесно связаны между собой. Их действие подчинено одному и тому же принципу: они подвергаются фосфорилированию в кишечнике. В клетках они связаны с белками и принимают участие как кофакторы в структуре ряда энзиматических систем. Отсутствие одного из витаминов этой группы может прервать всю цепь биохимических процессов.

Витамин В1 – тиамин, антиневритный. Активная его форма – ТДФ (тиаминдифосфат) является коэнзимом декарбоксилаз, участвующих в обмене углеводов. Поэтому суточная потребность в этом витамине возрастает значительно при увеличении потребления углеводов, так же как и при лихорадящих состояниях у детей.

Витамин В1 является кофактором следующих ферментативных систем:

1. Пируватдегидрогеназный комплекс.

2. α-кетоглутаратдегидрогеназный комплекс фермента ЦТК, в котором образуются молекулы АТФ.

3. Транскетолазы, ключевого фермента пентозного цикла, продукты этого цикла необходимы для образования жирных кислот, ацетилхолина, нуклеиновых кислот, стеринов.

Тиамин необходим для синтеза ацетилхолина и для нормального функционирования нервной системы. Он всасывается, главным образом, в тонком кишечнике. При заболеваниях пищеварительной системы всасывание витамина уменьшается, это необходимо учитывать в комплексной терапии в детской патологии. Наиболее чувствительными к недостатку этого витамина являются органы с усиленным углеводным обменом – нервная система и сердечная мышца.

С грудным молоком дети получают 0,12 – 0,16 мг тиамина в сутки, что обеспечивает им хорошее развитие. Дети, получающие мясо, крупы, овощи, не нуждаются в добавке витамина. Суточная потребность для взрослого 1,2 мг.

Классический авитаминоз В1 – «бери-бери». В Европе заболевание редкое, но встречается в странах, где бедные слои населения питаются недостаточно и, главным образом, полированным рисом. Субклинические формы с гипорефлексией и отеками встречаются в Японии.

В некоторых районах, где основное питание – рис или соя и содержание тиамина в женском молоке низкое, встречается острая форма «бери-бери» у грудных детей между 2–4 месяцами жизни, что дает высокую смертность. «Бери-бери» проявляется в виде анорексии, гипотрофии, атонических запоров или диареи, склонности к рвоте и срыгиванию, выбухания большого родничка, беспокойства, раздражительности, апатии, слабости, периферической нейропатии с низкими сухожильными рефлексами, охриплости голоса, яркости слизистых оболочек, мышечной гипотонии, симптома «болтающейся головы». Вследствие задержки воды и электролитов появляются отеки, затем присоединяются явления со стороны сердечно-сосудистой системы, явления менингизма, возможны судороги и смерть.

11.Витамин В2, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин В2 (рибофлавин), являясь активной частью простетической группы флавиновых ферментов (ФМН и ФАД), участвует в клеточном дыхании и образовании зрительных пигментов.

Физиологическое действие рибофлавина заключается в стимулировании роста и нарастании массы тела, в увеличении диуреза и выведении солей с мочой.

Участвуя в тканевом дыхании, витамин В2 обеспечивает нормальное функционирование эпителиальных тканей, хрусталика и тканей, наиболее чувствительных к недостатку кислорода, например, мозг.

Явления недостаточности проявляются, главным образом, в тканях эндодермального происхождения – глаза, кожа. Отмечаются конъюнктивиты, отек и помутнение роговицы, себорейные явления в области нособоковых складок, трещины на губах и в углах рта, глоссит с атрофией сосочков. Суточная потребность в витамине В2 2–4 мг.

 

12.Витамин В6, суточная потребность, химическое строение, явления недостаточности, биологическая роль.

Витамин В6 – пиридоксин, антидерматитный. Эта группа состоит из 3 взаимопревращающихся друг в друга в печени веществ: пиридоксин, пиридоксаль и пиридоксамин. Витамин В6 входит в состав многих ферментов, участвующих в регуляции белкового и других видов обмена. Он способствует транспорту аминокислот из кишечника в кровь и из кровеносного русла в ткани, активирует процессы трансаминирования, дезаминирования и декарбоксилирования аминокислот. Он стимулирует синтез: белка, транспортирующего железо в крови, пуриновых и пиримидиновых нуклеотидов. Витамин В6 участвует в синтезе сфингозина в ткани мозга, в процессах всасывания витамина В12 и тем самым предотвращает возникновение малокровия. У детей при недостатке витамина возникают судороги. Суточная потребность в витамине В6 2 мг.

 

 

Ферменты.

1.Что такое ферменты, биологическая роль.

Ферменты или энзимы (Е) - это специфические белки, содержащиеся во всех клетках организма человека и являющиеся биологическими катализаторами.

Ферменты являются посредниками между организмом и окружающей средой, обеспечивают адаптацию организма к изменяющимся условиям (авторегуляторы).

В онтогенезе отмечается разнообразие возрастных изменений индукции ферментов. Разные периоды индукции определяют необходимость синтеза тех или иных ферментов. Важнейшим фактором, меняющим метаболизм детского организма, служит изменение условий питания, в частности, характер вводимой пищи. Это положение относится не только к гидролитическим ферментам желудочно-кишечного тракта. От количества и состава пищи зависит активность и тканевых энзимов. Например, на рационе, содержащем много белка в пище, наблюдается увеличение активности ферментов, синтезирующих мочевину и превращение аминокислот.

 

2.Номенклатура и классификация ферментов.

Номенклатура.

1.Тривиальные названия ферментов (пепсин, трипсин, химотрипсин).

2.Название субстрата + суффикс –аза (липиды – липаза, сахароза – сахараза, мальтоза – мальтаза).

3. По типу катализируемой реакции (дегидрирование – дегидрогеназа, карбоксилирование – карбоксилаза).

Основой классификации ферментов служит тип катализируемой реакции. Согласно данной классификации ферменты делят на шесть классов:

1. Оксидоредуктазы ( катализируют окислительно-восстановительные реакции). Подклассы: оксидазы и оксигеназы (гидроксилазы), дегидрогеназы.

2. Трансферазы (катализируют реакции межмолекулярного переноса атомов, групп атомов, радикалов). Подклассы: аминотрансферазы, фосфотрнсферазы, метилтрансферазы, ацитилтрансферазы.

3. Гидролазы (катализируют расщепление внутримолекулярных связей органических молекул с участием воды). Подклассы: пептидазы, гликозидазы, эстеразы, фосфатазы.

4. Лиазы (катализируют разрыв связей С-О, С-С, С-N, а также обратимые реакции отщепления различных групп от субстратов негидролитическим путем). Подклассы: G-N-лиазы и по ту катализируемой реакции.

 

5. Изомеразы (катализируют взаимопревращения оптических и геометрических изомеров). Подклассы: цис-транс-изомеры, рацелазы, эпимеразы.

6. Лигазы (катализируют синтез органических веществ из двух исходных молекул с использованием энергии распада АТФ).Подклассы: формирующие связи по типу углерод-кислород; углерод-сера; углерод-азот; углерод-углерод; фосфор-кислород; азот-металл.

3.Значение определения активности ферментов в диагнозе и прогнозе заболеваний.

Для каждой ткани (органа) характерен определённый ферментный состав (маркерные ферменты). Для сердечной мышцы маркерными ферментами являются - аспартатаминотрансфераза (АсТ), креатинкиназа; для печени – аланинаминотрансфераза (АлТ); для предстательной железы – кислая фосфатаза (КФ); для поджелудочной железы – α-амилаза и т.д.

При заболеваниях, сопровождающихся некрозом, маркерные (органоспецифичные) ферменты из повреждённых клеток в большом количестве поступают в кровь, и уровень их активности увеличивается, возникает гиперферментемия. Определение уровня активности маркерных ферментов в сыворотке крови имеет клиническое значение в диагностике и прогнозе ряда заболеваний.

Так, при инфаркте миокарда увеличивается уровень активности АсТ, креатиназы; вирусном гепатите – АлТ; раке предстательной железы – кислой фосфатазы; при заболеваниях поджелудочной железы – α-амилазы и т.д.

При отсутствии или недостатке тех или иных ферментов, связанных с мутацией гена, ответственного за синтез белка – фермента, возникают наследственные энзимопатии.

При фенилпировиноградной олигофрении отсутствует фермент гидроксилаза, катализирующая превращение аминокислоты фенилаланина в тирозин. Это приводит к повышению уровня фенилаланина в крови и моче, кроме того, из фенилаланина образуется фенилпировиноградная кислота, что оказывает токсическое действие на центральную нервную систему, в результате чего развивается слабоумие.

При галактоземии отсутствует фермент галактозо-1-фосфат-уридилтрансфе-раза, катализирующий превращение галактоза-1-фосфат в глюкоза-1-фосфат. Это является причиной увеличения галактозы и галактоза-1-фосфат в крови, что сопровождается у детей грудного возраста рвотой, диареей, вздутием живота и т.д.

 

4.Применение ферментов в качестве лечебных препаратов.

Некоторые ферменты применяют в качестве лечебных препаратов:

· Пепсин – при нарушении синтеза и секреции пепсина в желудке;

· Трипсин, химотрипсин используются для лечения гнойных ран;

· Фибринолизин, стрептокиназа – для предотвращения тромбообразования при пересадке органов и других операциях;

· Гиалуронидаза обеспечивает рассасывание рубцов;

· Аспарагиназа применяется при лечении некоторых злокачественных образований и т.д.

5.Химическая природа ферментов.

Ферменты по химической природе являются белками. Им присущи физико-химические свойства белков: высокая молекулярная масса, амфотерность, гидрофильность. Они обладают электрофоретической подвижностью, высокой специфичностью, подвергаются высаливанию и денатурации.

В организме каждая химическая реакция протекает на определенном энергетическом уровне, при определённой энергии активации. Ферменты снижают энергию активации путем увеличения числа активированных молекул, которые становятся реакционными на более низком энергетическом уровне.

Ферментативная реакция – это многостадийный процесс. На первой стадии происходит сближение и ориентация, а также устанавливается индуцированное комплементарное соответствие между ферментом и субстратом, в результате образуется фермент-субстратный комплекс (ЕS).

На второй стадии возникает напряжение и деформация субстрата, в результате чего происходит сдвиг электронной плотности, изменение степени поляризации, связи в молекуле субстрата деформируются и легко распадаются. В процессе образования фермент-субстратного комплекса достигается переходное состояние, характеризующееся низкой энергией активации, в результате чего образуется новый продукт, а после его диссоциации фермент возвращается в исходное состояние.

 

6.Строение простых и сложных ферментов.

 

По составу ферменты делятся на простые и сложные.

Простые ферменты состоят из аминокислот. К ним относятся ферменты желудочно-кишечного тракта – α-амилаза, пепсин, трипсин, липаза и др. Все эти ферменты относятся к 3 классу – гидролаз.

Сложные ферменты состоят из белковой части – апофермента и небелковой – кофактора. Каталитически активный комплекс «фермент – кофактор» называется холоферментом. В качестве кофакторов могут выступать как ионы металлов, так и органические соединения, многие из которых являются производными витаминов.

Например, оксидоредуктазы используют в качестве кофакторов Fe²+, Сu²+, Mn²+, киназы Mg²+; для глутатионпероксидазы – фермента, обезвреживающего перекись водорода, требуется селен.

Коферменты – это органические вещества, которые непрочно связаны с белковой частью. Например, НАД-зависимые дегидрогеназы состоят из белка и коферментов НАД, НАДФ, производных витамина РР.

Простетическая группа – это коферменты, которые прочно (часто ковалентно) связаны с апоферментом. Например, флавиновые дегидрогеназы состоят из белка и простетических групп ФАД, ФМН, производных витамина В2. Апофермент определяет направленность или специфичность действия фермента.

 

7.Понятие об активном центре ферментов.

Активный центр – это относительно небольшой участок, расположенный в узком гидрофобном углублении (щели) поверхности молекулы фермента, непосредственно участвующий в катализе. Активный центр – это точная пространственная организация больших ансамблей, построенных из аминокислотных остатков: серин – ОН группа; цистеин – SH группа; лизин – NH2 группа; гистидин – имидазольное кольцо; глутаминовая, аспарагиновая кислоты – СООН группа.

По первичной структуре эти аминокислотные остатки располагаются на различном расстоянии друг от друга, при образовании вторичной, третичной структур аминокислотные остатки сближаются, формируя активный центр.

Активный центр включает субстратсвязывающий участок, который отвечает за специфическое комплементарное связывание субстрата, и каталитический участок непосредственного химического взаимодействия.

В активный центр сложных ферментов входит участок для связывания кофактора.

8.Механизм действия ферментов.

1 этап – Ориентировочная сорбция субстрата на активном ценре фермента с образовании обратимого E-S комплекса (фермент-субстратного). На этом этапе происходит взаимодействие адсорбционного центра фермента с молекулой субстрата.

2 этап – Химические превращения молекулы субстрата в составе фермент-субстратного комплекса с образованием комплекса фермента с химически преобразованным субстратом. На этом этапе разрываются одни ковалентные связи и возникают новые. Поэтому этот этап протекает значительно медленнее, чем 1-й и 3-й этапы. Именно скорость второго этапа определяет скорость всей ферментативной реакции в целом.

3-этап – Десорбция готового продукта из его комплекса с ферментом. Этот этап протекает легче, чем 2-й. Он, как и 2-й, тоже необратим. Исключение – обратимые ферментативные реакции.

9.Свойства ферментов как биологических катализаторов: термолабильность, влияние рН среды, специфичность.

На активность ферментов оказывают влияние температура, рН среды, ионная сила растворов.

Так как ферменты по химической природе являются белками, повышение температуры свыше 45-50˚С приводит к тепловой денатурации и ферменты инактивируются (исключение – миокиназа мышц, папаин).

Низкие температуры не разрушают ферменты, а только приостанавливают их действие. Оптимальная температура для проявления активности фермента равна 37-40˚С.

На активность ферментов оказывает влияние реакция среды. Значение рН среды, при котором фермент проявляет максимальную активность, называют оптимумом рН среды для действия данного фермента. РН-оптимум действия ферментов лежит в пределах физиологических значений 6,0-8,0. Исключения: пепсин, рН-оптимум которого равен 2,0; аргиназа – рН-оптимум равен 10,0.

Ферменты обладают специфичностью. Различают несколько видов специфичности:

1. Абсолютная специфичность – фермент взаимодействует только с одним субстратом. Например, уреаза ускоряет гидролиз мочевины, но не расщепляет тиомочевину.

2. Стереоспецифичность – фермент взаимодействует с определенным оптическим и геометрическим изомером.

3. Абсолютная групповая специфичность – ферменты специфичны в отношении характера связи, а также тех соединений, которые образуют эту связь. Например, α-амилаза расщепляет α-гликозидную связь в молекуле мальтозы, состоящей из двух молекул глюкозы, но не расщепляет молекулу сахарозы, состоящую из молекулы глюкозы и молекулы фруктозы.

4. Относительная групповая специфичность. В этом случае ферменты специфичны только в отношении связи, но безразличны к тем соединениям, которые образуют эту связь. Например, протеазы ускоряют гидролиз пептидных связей в различных белках, липазы ускоряют расщепление сложноэфирных связей в жирах.

10.Механизмы активирования ферментов. Проферменты, физиологическое значение образования их.

На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.

Активирование ферментов могут вызывать:

1. Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.

2. Частичный их протеолиз.

Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.

 

Пепсиноген НСl пепсин + пептид

 

Трипсиноген энтерокиназа трипсин + пептид

Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.

3. Фосфорилирование и дефосфорилирование. Например:

неакт. липаза + АТФ → липаза-фосфат (акт. липаза);

липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

 

Проферменты, или проэнзимы, зимогены, энзимогены — функционально неактивные предшественники ферментов, подвергающиеся тем или иным преобразованиям (обычно расщеплению специфическими эндо- или экзопептидазами или гидролизу), в результате чего образуется каталитически активный продукт — фермент.

11.Ингибиторы ферментов: специфические и неспецифические.

Ингибиторы по характеру своего действия подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.

Обратимые ингибиторы – это соединения, которые нековалентно взаимодействуют с ферментом и могут отщепляться от фермента.

Необратимые ингибиторы – это соединения, которые образуют ковалентные, прочные связи с ферментом.

Необратимое ингибирование может быть специфическим и неспецифическим.

При специфическом ингибировании ингибиторы тормозят действие определенных ферментов, связывая отдельные функциональные группы активного центра. Например, тиоловые яды ингибируют ферменты, в активный центр которых входят SН-группы; угарный газ (СО) ингибирует ферменты, имеющие в активном центре Fe²+.

Неспецифические ингибиторы тормозят действие всех ферментов. К ним относятся все денатурирующие факторы (высокая температура, органические и минеральные кислоты, соли тяжелых металлов и др.).

12.Конкурентное торможение. Терапевтический эффект применения сульфаниламидных препаратов.

Обратимое ингибирование может быть конкурентным. При этом ингибитор является структурным аналогом субстрата и конкурирует с ним за связывание в субстратсвязывающем участке активного центра.

Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата.

Сукцинатдегидрогеназа (СДГ) – фермент цитратного цикла, дегидрирует сукцинат, превращая его в фумарат. Малонат, который структурно похож на сукцинат, связывается в активном центре СДГ, но не может дегидрироваться. Поэтому малонат – конкурентный ингибитор СДГ.

Многие лекарственные препараты являются конкурентными ингибиторами ферментов. Например, сульфаниламидные препараты, являясь структурными аналогами парааминобензойной кислоты (ПАБК) – основного фактора роста болезнетворных микроорганизмов, конкурируют с ней за связывание в субстратсвязывающем участке активного центра фермента. На этом основано противомикробное действие сульфаниламидных препаратов.

 

13.Аллостерические (регуляторные) ферменты.

Регуляторные (аллостерические) ферменты помимо активного центра имеют аллостерический центр. К аллостерическому центру могут присоединяться гормоны или продукты реакции. Это приводит к изменению структуры активного центра. Эти вещества называются аллостерическими эффекторами (модификаторами). Эффекторы могут быть положительными (усиливают действие фермента) и отрицательными (блокируют действие фермента).

14.Регуляция по типу обратной связи (ретроингибирование).

Регуляция по типу обратной связи (аллостерическая регуляция активсти ферментов).

В некоторых многоступенчатых метаболических путях конечный продукт ингибирует регуляторный (аллостерический) фермент процесса.

При повышении концентрации продукта реакции „Z” он занимает аллостерический центр регуляторного фермента „Е1”. Это приводит к изменению конформации активного центра „Е1”, в результате чего фермент „Е1” ингибируется и не может соединиться с субстратом „А”. Эта регуляция обеспечивает адаптацию организма к изменяющимся условиям. Например,

Треонин Е1 x Е2 y Е3 n изолейцин

15.Изоферменты, механизм образования, биологическая роль.

Изоферменты – это множественные формы одного и того же фермента. Изоферменты катализируют одну и ту же реакцию, но отличаются по аминокислотному составу и некоторым физико-химическим свойствам (молекулярной массе, электрофоретической подвижности и др.). Например, фермент лактатдегидрогеназа (ЛДГ) существует в пяти формах: ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

 

 

ЛДГ катализирует реакцию:

Глюкоза

ЛДГ 4,5

ПВК молочная кислота + 2 АТФ

ЛДГ 1,2

 
 

 

 


СО2 + Н2О + 38 АТФ

 

Каждая ткань имеет определенный изоферментный спектр ЛДГ: в сердечной мышце – ЛДГ1,2; в печени, скелетных мышцах – ЛДГ4,5.

Какова целесообразность синтеза фермента в нескольких молекулярных формах? В тканях с преимущественно аэробным обменом веществ (сердечная мышца), преобладают формы ЛДГ1,2, которые обеспечивают ткани большим количеством энергии. В тканях с преимущественно анаэробным обменом веществ (печень, скелетные мышцы) преобладают ЛДГ4,5, что приводит к образованию молочной кислоты и двух молекул АТФ.

Определение уровня активности изоферментов в сыворотке крови имеет важное значение в диагностике заболеваний. например, повышение активности ЛДГ1,2 наблюдается при инфаркте миокарда; ЛДГ4,5 – при заболеваниях печени (гепатит, цирроз).

16.Иммобилизованные ферменты, значение в медицине.

Практическое использование ферментов столкнулось с большими трудностями. Первое – это сложность и дороговизна получения достаточных количеств ферментов в чистом виде. Кроме того, ферменты быстро теряют свою активность под действием различных факторов (изменение кислотности среды, температуры, солевого состава и др.)

При использовании ферментов возникают осложнения, в первую очередь иммунологические. Также невозможно создать высокую местную концентрацию фермента при локальных поражениях, так как ферменты не обладают способностью к «направленному транспорту».

Группой под руководством отечественного ученого И. Березина впервые были созданы иммобилизованные ферменты.

Под иммобилизацией ферментов понимают их физическое (адсорбционное) или химическое (ковалентное) связывание с матрицей носителя, которая защищает фермент от инактивирующих воздействий, но в минимальной степени влияет на функционирование его активных центров. Материалом для изготовления носителя могут служить неорганические пористые стекла, силикагели, а также природные или синтетические полимеры.

Разработаны несколько видов иммобилизации.

Наиболее распространены реакции ацилирования, в которые могут вступать амино-окси- и некоторые другие группы белка, при этом чаще всего реакция протекает по аминогруппам лизиновых остатков.

Очень распространена реакция образования азаметиновой связи (оснований Шиффа) между альдегидными группами носителя и аминогруппами белка.

Относительно новый способ получения устойчивых терапевтических ферментов – иммобилизация на соединениях, характерных для самого организма или даже обладающих собственной биологической активностью, дополняющих или усиливающих действие связанного с ними фермента. Примером может служить фибринолизин, иммобилизованный на гепарине, урокиназа – на альбумине.

Наконец, растворимые препараты иммобилизованных ферментов медицинского назначения могут быть получены путем их межмолекулярного слияния. Например, слияние молекул галактозидазы обеспечивает стабилизацию фермента. Одновременно замедляется переваривание фермента и увеличивается время его нахождения в кровотоке.

Иммобилизованные ферменты имеют ряд преимуществ. Они обладают достаточно длительным сроком годности, у них снижена аллергичность и иммуногенность за счет частичной или полной блокады антигенных участков белка макромолекулой носителя, они слабо восприимчивы к действию естественных ингибиторов и проявляют терапевтическую активность в течение длительного времени. Носитель, с которым связан фермент, обеспечивает не только устойчивость, но и направленную доставку фермента предпочтительно в зону поражения, т.е. в определенный орган или ткань.

Область применения иммобилизованных ферментов очень широка. Они могут быть компонентами аналитических систем для клинического биохимического анализа, могут служить для модификации внутренних поверхностей, как различного рода протезов, так и медицинских аппаратов, могут являться компонентами перевязочных и дренирующих материалов, обеспечивающих ускорение заживления и очищения ран.

Если фермент служит для лечения местных поражений (опухолей, тромбов) и его присутствие в других органах нежелательно, то создаются биосовместимые и биоразлагаемые производные ферментов в виде микрочастиц, гранул, таблеток.

Некоторые иммобилизованные ферменты используются для наружного применения, при включении в состав различных мазей или кремов.

 

 

 

<== предыдущая лекция | следующая лекция ==>
 | Пищеварительная система.


Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных