Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Абсолютно неупругий удар. Это удар, при котором после столкновения тела «слипаются».




 

Это удар, при котором после столкновения тела «слипаются».

При абсолютно неупругом соударении свободных тел импульс системы сохраняется, а ее кинетическая энергия уменьшается (потерянная кинетическая энергия переходит во внутреннюю энергию — тела нагреваются). Деформации тел в процессе такого удара постоянно нарастают и формы тел после завершения удара не восстанавливаются.

Реальные удары

 

Абсолютно упругий и абсолютно неупругий удары — это идеальные предельные случаи. При соударении реальных тел имеют место элементы, свойственные как упругим, так и неупругим ударам.

Характерные свойства абсолютно упругого и абсолютно неупругого ударов наглядно проявляются в системе отсчета, связанной с центром масс сталкивающихся тел. В этой системе отсчета удары выглядят очень просто.

Абсолютно упругий удар Абсолютно неупругий удар Удар реальных тел
Тела движутся навстречу друг другу со скоростями vv v2 и после удара расходятся с такими же скоростями: v = v1 , v =v2 Тела движутся навстречу друг другу со скоростями v1, v 2 и после удара останавливаются: v =0, v =0 Тела движутся навстречу друг другу со скоростями v1, v2 и после удара расходятся со скоростями: v =kv1, v = kv2 (0 < k< 1).
     
Таким образом, в системе центра масс величины скоростей не изменяются Таким образом, в системе центра масс величины скоростей после удара становятся равными нулю Таким образом, в системе центра масс величины скоростей изменяются одинаково

Коэффициент k одинаков для обоих тел и показывает в системе центра масс, чему равно отношение величины скорости тела после удара (v 1) к величине скорости до удара:

 

Его называют коэффициентом восстановления скорости. Он характеризует степень упругости. Если k = 1, то удар абсолютно упругий (удар стального шара о стальную плиту); если k = О, то удар абсолютно неупругий (удар комка влажной глины о плиту).

При игре в теннис коэффициент восстановления может принимать значения до 0,7.

Игра в теннис

 

При игре в теннис резкое изменение характера движения мяча при ударе ракетки обусловлено силой, действующей на него со стороны ракетки. Время действия силы удара очень мало, но ее величина весьма значительна. И мяч, и ракетка при столкновении деформируются довольно сильно (рис. 9.13).

Подача мяча при игре в теннис — пример неупругого соударения. Все параметры удара представлены на рис. 9.14.

Ракетка массой М со скоростью v0 ударяет по неподвижному мячу массой т. После того, как мяч отделился от поверхности ракетки, он движется со скоростью и, а скорость ракетки после этого становится v. Рассматривая ракетку и мяч как изолированную систему, можно записать закон сохранения импульса:

Mv0 = Mv + ти.

Высокоскоростная съемка позволяет определить скорость ракетки в момент удара и после удара, а также скорость мяча после удара. Найденные таким путем скорости можно использовать для вычисления потерь кинетической энергии при выполнении подачи. Для профессионального игрока разность между кинетической энергией ракетки перед ударом и суммарной кинетической энергией ракетки и мяча после удара составляет приблизительно 30—35 Дж. Эта энергия превращается в другие формы энергии, а именно в тепловую и звуковую (всегда слышен удар ракетки по мячу).

 

 

Рис. 9.13. Удар теннисной ракеткой по мячу: деформируются оба тела

Рис. 9.14. Взаимодействие ракетки и мяча при игре в теннис

Удар ногой по мячу

 

При изучении баллистического движения спортсменов, выполняющих удары, было обнаружено, что, если в начале выполнения такого движения все усилия, приложенные к центрам тяжести звеньев кинематической цепи (нога), направлены по ходу движения, то перед самым соприкосновением с ударяемым предметом эти усилия меняют свое направление на обратное (рис. 9.15).

Физиологически этому торможению соответствует активность антагонистов (совершенно пассивных в начальной фазе движения), хорошо прослеживаемая при отведении биоэлектрических потенциалов соответствующих мышц (рис. 9.16).

Рис. 9.15. Направление усилий, приложенных к центрам тяжести звеньев ноги

спортсмена, выполняющего удар по мячу: / и // — начало движения; ///— момент соприкосновения стопы с мячом; IV— момент после удара

Рис. 9.16. Биоэлектрическая активность мышц ноги спортсмена,

выполняющего удар по мячу: 1 — прямая мышца бедра; 2 — двуглавая мышца бедра; 3 — передняя большеберцовая; 4 — икроножная

 

Описываемое явление имеет под собой совершенно определенные физические причины. При нанесении любого удара весьма важно превратить мягкую кинематическую цепь ноги в единый жесткий рычаг (сделать ее стержнем). В этом случае в ударе примет участие не только масса конечного звена цепи, но и массы всех остальных звеньев (что заметно повышает массу ударяющего предмета). Превратившись в жесткую систему, кинематическая цепь конечности не будет в самые решающие мгновения амортизировать и, следовательно, передаст ударяемому предмету максимально возможное количество кинетической энергии.

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных