ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Свойства непрерывных функций.1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.
2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0. Гексаэдр - правильный шестигранник Вычислим интеграл Математика Задачи Ортогональная система координат в пространстве Математическая модель 3) Суперпозиция непрерывных функций – есть непрерывная функция. Это свойство может быть записано следующим образом: Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.
Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах. Непрерывность некоторых элементарных функций. 1) Функция f(x) = C, C = const – непрерывная функция на всей области определения. 2) Рациональная функция непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.
3) Тригонометрические функции непрерывны на своей области определения. Докажем свойство 3 для функции y = sinx. Запишем приращение функции y = sin(x + x) – sinx, или после преобразования:
Действительно, имеется предел произведения двух функций и . При этом функция косинус – ограниченная функция при х0 , а т.к. предел функции синус , то она является бесконечно малой при х0. Таким образом, имеется произведение ограниченной функции на бесконечно малую, следовательно это произведение, т.е. функция у – бесконечно малая. В соответствии с рассмотренными выше определениями, функция у = sinx – непрерывная функция для любого значения х = х0 из области определения, т.к. ее приращение в этой точке – бесконечно малая величина. Аналогично можно доказать непрерывность остальных тригонометрических функций на всей области определения. Вообще следует заметить, что все основные элементарные функции непрерывны на всей своей области определения.
Не нашли, что искали? Воспользуйтесь поиском:
|