Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Взаимное расположение прямых в пространстве




     
Пересекающиеся прямые: лежат в одной плоскости, имеют одну общую точку. Параллельные прямые: лежат в одной плоскости, не имеют общих точек (не пересекаются) Скрещивающиеся прямые: не лежат в одной плоскости, не имеют общих точек (не пересекаются)
Параллельность плоскостей Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют ни одной общей точки. α∥β.  

 

Признак параллельности двух плоскостей Теорема. Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны. Если аа 1 и bb 1, то α∥β.  

Свойства параллельных плоскосте й

  Вели α∥β и они пересекаются с γ, то аb. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Если α∥β и AB∥CD, то АВ = CD. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

 

39. Прямые линии в пространстве могут быть параллельными, пересекающимися и скрещивающимися. Рассмотрим подробнее каждый случай.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных