ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Если объектаможно выбрать т способами, а объектb - к способами, то пару (а, b) можно выбратьт×к способами.Правило суммы и произведения, сформулированные для двух объектов, можно обобщить и на случай t объектов. Задача 2. На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать пару плодов, состоящую из яблока и апельсина? Решение. По условию задачи яблоко можно выбрать пятью способами, апельсин - четырьмя. Так как в задаче речь идет о выборе пары (яблоко, апельсин), то ее, согласно правилу произведения, можно выбрать 5×4 = 20 способами. Задача 3. Сколько всего двузначных чисел можно составить из цифр 7, 4 и 5 при условии, что они в записи числа не повторяются? Решение. Чтобы записать двузначное число, надо выбрать цифру десятков и цифру единиц. Согласно условию на месте десятков в записи числа может быть любая из цифр 7, 4 и 5. Другим словами, выбрать цифру десятков можно тремя способами. После того как цифра десятков определена, для выбора цифры единиц остаются две возможности, поскольку цифры в записи числа не должны повторяться. Так как любое двузначное число - это упорядоченная пара, состоящая из цифры десятков и цифры единиц, то ее выбор, согласно правилу произведения, можно осуществить 3×2 = 6 способами. Задача 4. Сколько трехзначных чисел можно составить, используя цифры 7,4 и 5? Решение. В данной задаче рассматриваются трехзначные числа, так как цифры в записи этих чисел могут повторяться, то цифру сотен, цифру десятков и цифру единиц можно выбрать тремя способами каждую. Поскольку запись трехзначного числа представляет собой упорядоченный набор из трех элементов, то, согласно правилу произведения, его выбор можно осуществить 27 способами, так как 3×3×3 = 27. Задача 5. Сколько всего четырехзначных чисел можно составить из цифр 0 и 3? Решение. Запись четырехзначного числа представляет собой упорядоченный набор (кортеж) из четырех цифр. Первую цифру - цифру тысяч можно выбрать только одним способом, так как запись числа не может начинаться с нуля. Цифрой сотен может быть либо ноль, либо три, т.е. имеется два способа выбора. Столько же способов выбора имеется для цифры десятков и цифры единиц. Итак, цифру тысяч можно выбрать одним способом, цифру сотен двумя, цифру десятков - двумя, цифру единиц - двумя. Чтобы узнать, сколько всего четырехзначных чисел можно составить из цифр 0 и 3, согласно правилу произведения, способы выбора каждой цифры надо перемножить: 1×2×2×2 = 8. Таким образом, имеем 8 четырехзначных чисел. Задача 6. Сколько трехзначных чисел можно записать, используя цифры 0, 1, 3, 6, 7 и 9, если каждая из них может быть использована в записи только один раз? Решение. Так как запись числа не может начинаться с нуля, то цифру сотен можно выбрать пятью способами; выбор цифры десятков можно осуществить также пятью способами, поскольку цифры в записи числа не должны повторяться, а одна из шести данных цифр будет уже использована для записи сотен; после выбора двух цифр (для записи сотен и десятков) выбрать цифру единиц из данных шести можно четырьмя способами. Отсюда, по правилу произведения, получаем, что всего трехзначных чисел (из данных шести цифр) можно образовать 100: 5×5×4=100. Упражнения 1. Школьники из Волгограда собрались на каникулы поехать в Москву, посетив по дороге Нижний Новгород. Из Волгограда в Нижний Новгород можно отправиться на теплоходе или поезде, а из Нижнего Новгорода в Москву - на самолете, теплоходе или автобусе. Сколькими различными способами могут ребята осуществить свое путешествие? Назовите все возможные варианты этого путешествия. 2. Сколько различных двузначных чисел можно записать, используя цифры 3, 4, 5 и 6? Сколько различных двузначных чисел можно записать, используя при записи числа каждую из указанных цифр только один раз? Запишите эти числа. 3. Девять школьников, сдавая экзамен по математике, русскому и английскому языку, получили отметки «4» и «5». Можно ли утверждать, что по крайней мере двое из них получили по каждому предмету одинаковые отметки? 4. Сколько трехзначных чисел можно составить из трех различных, не равных нулю цифр? Зависит ли результат от того, какие цифры взяты? Укажите какой-нибудь способ перебора трехзначных чисел, при котором ни одно число не может быть пропущено. 5. Сколько всевозможных трехзначных чисел можно составить из цифр 1, 2, 3 и 4 так, чтобы цифры в записи числа не повторялись? Изменится ли решение этой задачи, если вместо цифры 4 будет дана цифра 0? 6. Сколько всевозможных четырехзначных чисел можно составить, используя для записи цифры 1, 2, 3 и 4? Какова разность между самым большим и самым маленьким из них? 7. Сколько пятизначных чисел, первые (слева) три цифры которых 2, 3 и 4, можно составить из цифр 1, 2, 3, 4, 5? Изменится ли ответ в этой задаче, если цифры в записи числа не будут повторяться? 8. Из цифр 0, 1, 2, 3, 4 составляют всевозможные пятизначные числа, причем так, что в записи каждого числа содержатся все данные цифры. Сколько можно составить таких чисел? Чему будет равна разность между наибольшим и наименьшим из полученных чисел? 9. Сколько натуральных чисел, меньших 1000, можно записать, используя цифры 7, 4 и 5? Сколько среди них четных? Нечетных? Кратных 5?
Не нашли, что искали? Воспользуйтесь поиском:
|