Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Условные, разделительные и лемматические силлогизмы.




--------------------------------------------------------------------------------------------------------

 

14.Индукция: полная, неполная, популярная и научная. Понятие о статистических умозаключениях.

Индуктивным называется умозаключение, в котором на основании принадлежности признака отдельным предметам или частям некоторого класса делают вывод о его принадлежности классу в целом. Основная функция индуктивных выводов в процессе познания — генерализация, т.е. получение общих суждений

Важное место принадлежит индуктивным выводам в судебно-следственной практике — на их основе формулируются многочисленные обобщения, касающиеся обычных отношений между людьми, мотивов и целей совершения противоправных действий.

В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию. Рассмотрим их особенности.

1. Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом. Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов в которых является конечным и легко обозримым (число государств в Европе).

Схема умозаключения полной индукции имеет следующий вид:

Посылки:

1) Si имеет признак Р §2 имеет признак Р

Sn имеет признак Р

2) Si, 82,..., Sn — составляют класс К

В одних случаях полная индукция дает утвердительные заключения, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в посылках фиксируется отсутствие определенного признака у всех представителей класса.

2. Неполная индукция — это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом.

Схема неполной индукции имеет следующий вид:

Посылки:

1) Si имеет признак Р S 2 имеет признак Р

Sn имеет признак Р ' 2) Si, 82,..., Sn принадлежат классу К

 

Индукция

 

 

Полная   Неполная

 

 

Популярная

 

 

Научная  
Методом отбора   Методом исключения
       

 

 

Популярная индукция

Популярной индукцией называют обобщение, в котором путем перечисления устанавливают принадлежность признака некоторым предметам или частям класса и на этой основе проблематично заключают о его принадлежности всему классу. Повторяемость признаков во многих случаях действительно отражает всеобщие свойства явлений.

Популярная индукция определяет первые шаги и в развитии научных знаний. Любая наука начинает с эмпирического исследования — наблюдения над соответствующими объектами с целью их описания, классификации, выявления устойчивых связей, отношений и зависимостей.

Научная индукция

Научной индукцией называют умозаключение, в котором обобщение строится путем отбора необходимых и исключения случайных обстоятельств.

В зависимости от способов исследования различают: (1) индукцию методом отбора (селекции) и (2) индукцию методом исключения (элиминации).

1. Индукция методом отбора

 

Индукция методом отбора, или селективная индукция, — это умозаключение, в котором вывод о принадлежности признака классу (множеству) основывается на знании об образце (подмножестве), полученном методичным отбором явлений из различных частей этого класса.

2. Индукция методом исключения

 

Индукция методом исключения, или элиминативная индукция, — это система умозаключений, в которой выводы о причинах исследуемых явлений строятся путем обнаружения подтверждающих обстоятельств и исключения обстоятельств, не удовлетворяющих свойствам причинной связи.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных