![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Основные теоремы о пределахТеорема 1. Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а. Теорема 2. Доказательство этой теоремы будет приведено ниже. Теорема 3. Следствие. Теорема 4. Теорема 5. Если f(x)>0 вблизи точки х = а и Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0. Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и Пример. Найти предел Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим: Пример. Найти предел Так как 1 – cosx = Если a и b - бесконечно малые при х®а, причем b - бесконечно малая более высокого порядка, чем a, то g = a + b - бесконечно малая, эквивалентная a. Это можно доказать следующим равенством Тогда говорят, что a - главная часть бесконечно малой функции g. Пример. Функция х2 +х – бесконечно малая при х®0, х – главная часть этой функции. Чтобы показать это, запишем a = х2, b = х, тогда
Не нашли, что искали? Воспользуйтесь поиском:
|