Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Действия с комплексными числами




Основные действия с комплексными числами вытекают из действий с многочленами.

 

1) Сложение и вычитание

 

2) Умножение

 

В тригонометрической форме:

,

 

С случае комплексно – сопряженных чисел:

 

3) Деление

 

В тригонометрической форме:

 

 

4) Возведение в степень

Из операции умножения комплексных чисел следует, что

В общем случае получим:

,

где n – целое положительное число.

 

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

 

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

Пример. Найти формулы sin2j и cos2j.

Рассмотрим некоторое комплексное число

Тогда с одной стороны .

По формуле Муавра:

Приравнивая, получим

Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то

Получили известные формулы двойного угла.

5) Извлечение корня из комплексного числа

Возводя в степень, получим:

Отсюда:

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

Пример. Даны два комплексных числа . Требуется а) найти значение выражения в алгебраической форме, б) для числа найти тригонометрическую форму, найти z20, найти корни уравнения

a) Очевидно, справедливо следующее преобразование:

Далее производим деление двух комплексных чисел:

Получаем значение заданного выражения: 16(- i)4 = 16 i 4 =16.

б) Число представим в виде , где

Тогда .

Для нахождения воспользуемся формулой Муавра.

Если , то

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных