ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Параметрическое задание функцииИсследование и построение графика кривой, которая задана системой уравнений вида: , производится в общем то аналогично исследованию функции вида y = f(x). Находим производные: Теперь можно найти производную . Далее находятся значения параметра t, при которых хотя бы одна из производных j¢(t) или y¢(t) равна нулю или не существует. Такие значения параметра t называются критическими. Для каждого интервала (t1, t2), (t2, t3), …, (tk-1, tk) находим соответствующий интервал (x1, x2), (x2, x3), …, (xk-1, xk) и определяем знак производной на каждом из полученных интервалов, тем самым определяя промежутки возрастания и убывания функции. Далее находим вторую производную функции на каждом из интервалов и, определяя ее знак, находим направление выпуклости кривой в каждой точке. Для нахождения асимптот находим такие значения t, при приближении к которым или х или у стремится к бесконечности, и такие значения t, при приближении к которым и х и у стремится к бесконечности. В остальном исследование производится аналогичным также, как и исследование функции, заданной непосредственно. На практике исследование параметрически заданных функций осуществляется, например, при нахождении траектории движущегося объекта, где роль параметра t выполняет время. Ниже рассмотрим подробнее некоторые широко известные типы параметрически заданных кривых. Не нашли, что искали? Воспользуйтесь поиском:
|