![]() ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Непосредственное интегрированиеМетод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования. Рассмотрим применение этого метода на примере: Требуется найти значение интеграла Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных. Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.
Способ подстановки (замены переменных) Теорема: Если требуется найти интеграл Доказательство: Продифференцируем предлагаемое равенство: По рассмотренному выше свойству №2 неопределенного интеграла: f(x)dx = f[j(t)]j¢(t)dt что с учетом введенных обозначений и является исходным предположением. Теорема доказана. Пример. Найти неопределенный интеграл Сделаем замену t = sinx, dt = cosxdt.
Пример. Замена
Не нашли, что искали? Воспользуйтесь поиском:
|