ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Уравнение Бернулли.Определение. Уравнением Бернулли называется уравнение вида где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1. Для решения уравнения Бернулли применяют подстановку , с помощью которой уравнение Бернулли приводится к линейному. Для этого разделим исходное уравнение на yn. Применим подстановку, учтя, что . Т.е. получилось линейное уравнение относительно неизвестной функции z. Решение этого уравнения будем искать в виде:
Пример. Решить уравнение Разделим уравнение на xy2: Полагаем . Полагаем Произведя обратную подстановку, получаем: Пример. Решить уравнение
Разделим обе части уравнения на Полагаем Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение: Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что: Получаем: Применяя обратную подстановку, получаем окончательный ответ:
Уравнения вида y = f(y’) и x = f(y’). Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции. Для уравнения первого типа получаем: Делая замену, получаем: В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными. Общий интеграл в параметрической форме представляется системой уравнений: Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме. Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:
Не нашли, что искали? Воспользуйтесь поиском:
|