Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Линейные неоднородные дифференциальные уравнения.




Для интегрирования линейных неоднородных уравнений (Q(x)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

 

Метод Бернулли.

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .

При этом очевидно, что - дифференцирование по частям.

Подставляя в исходное уравнение, получаем:

Т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .

Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

 

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.

Интегрируя, можем найти функцию v:

; ;

Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию.

Подставляя полученные значения, получаем:

Окончательно получаем формулу:

, С2 - произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

 

Метод Лагранжа.

Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.

Вернемся к поставленной задаче:

Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.

Далее находится решение получившегося однородного дифференциального уравнения:

.

Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х.

Тогда по правилам дифференцирования произведения функций получаем:

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2025 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных