ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Линейные неоднородные дифференциальные уравнения.Для интегрирования линейных неоднородных уравнений (Q(x)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.
Метод Бернулли. Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций . При этом очевидно, что - дифференцирование по частям. Подставляя в исходное уравнение, получаем: Т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению. Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение . Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:
Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю. Интегрируя, можем найти функцию v: ; ; Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию. Подставляя полученные значения, получаем: Окончательно получаем формулу: , С2 - произвольный коэффициент. Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.
Метод Лагранжа. Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной. Вернемся к поставленной задаче: Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем. Далее находится решение получившегося однородного дифференциального уравнения: . Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х. Тогда по правилам дифференцирования произведения функций получаем:
Не нашли, что искали? Воспользуйтесь поиском:
|