Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Свойства растворов высокомолекулярных веществ (ВМВ)




Растворы ВМВ

Высокомолекулярные вещества (полимеры) – это вещества с молекулярной массой от десяти тысяч до нескольких миллионов единиц.

Размеры молекул ВМВ в вытянутом состоянии могут достигать 1000 нм. Температура кипения ВМВ значительно выше температуры разложения, поэтому они существуют, как правило, только в жидком или твердом состоянии.

По происхождению ВМВ делятся на:

1. Природные ВМВ или биополимеры (белки, нуклеиновые кислоты, полисахариды, а также биополимеры смешанного типа – гликопротеины, нуклеопротеины и др.) являются структурной основой всех живых организмов.

2.Синтетические (каучук, полиэтилен, синтетические смолы) и искусственные ВМВ получаются в результате химического синтеза. Методы синтеза ВМВ основаны на реакциях полимеризации, поликонденсации и сополимеризации.

3. Искусственные ВМВ изготавливают на основе природных ВМВ с заранее заданными свойствами.

Степенью полимеризации n называется число повторяющихся звеньев в макромолекуле ВМВ. Любой синтетический полимер состоит из макромолекул разной степени полимеризации и характеризуется полидисперсностью.

По строению полимерной цепи ВМВ бывают

Ø линейными,

Ø разветвленными,

Ø пространственными.

Например,

целлюлоза (растительный полисахарид) – имеет линейную структуру,

гликоген (животный полисахарид) – имеет разветвленную структуру,

фенопласты – имеет пространственную сетчатую структуру.

В животном организме присутствуют в основном плохорастворимые полимеры разветвленной и пространственной структур.

По способности к электролитической диссоциации ВМВ делятся на

Ø неэлектролиты

Ø полиэлектролиты.

Полиэлектролиты подразделяются на поликислоты, полиоснования и полиамфолиты.

Макромолекулы могут принимать различную форму в результате конформационных изменений: линейную, клубка, глобул.

Конформации и различные состояния объясняются стремлением к самопроизвольному уменьшению энергии Гиббса (∆G< 0), которое происходит при условии T·∆S > ∆H.

Таким образом, конформация представляет собой пространственную форму макромолекул, соответствующую максимуму энтропии.

Конформационными переходами можно объяснить многие процессы, происходящие в организме, например, регуляцию активности ферментов.

Гибкость как свойство молекулы обусловливает эластичность как свойство материала (например, эластичность волос, кожи и т.п.).

Макромолекулы ВМВ имеют уровни структурной организации. Для молекул белков известно 4 уровня структурной организации.

Первичная структура – это последовательность аминокислотных остатков в полипептидной цепи.

Вторичная структура – пространственная структура в виде α-спирали (фибриноген крови), либо β-структура складчатого листа (кератин волос).

Третичная структура – расположение вторичной структуры в пространстве. При этом образуются субъединицы белка или микроструктуры.

Четвертичная структура – объединение субъединиц в макроструктуры (гемоглобин крови).

Нативная, природно заданная структура белка способна нарушаться под действием различных факторов (резкие колебания температуры, рН, присутствия солей тяжелых металлов и др.). Денатурация белка – это нарушение первоначальных свойств белка, вызванное изменением пространственной структуры его макромолекулы и сопровождающееся изменением физико-химических и биологических свойств белка.

Белки в процессе денатурации:

• теряют гидрофильные свойства,

• нарушаются форма и размеры макромолекул,

• увеличивается вязкость растворов,

• уменьшается растворимость белков и степень набухания,

• денатурированные белки быстрее перевариваются ферментами желудочно-кишечного тракта по сравнению с нативными.

Растворы ВМВ являются лиофильными коллоидными системами. Для них характерны свойства как общие с растворами низкомолекулярных веществ и коллоидными системами, так и специфические.

Растворы ВМВ с истинными растворами низкомолекулярных веществ имеют ряд общих свойств:

1) образуются самопроизвольно;

2) являются термодинамически устойчивыми и не требуют присутствия стабилизаторов;

3) в растворах ВМВ взвешенными частицами являются не мицеллы, а макромолекулы, способные диссоциировать на ионы;

4) в растворах ВМВ отсутствует четко выраженная поверхность раздела фаз, их можно разбавлять и концентрировать.

К специфическим свойствам растворов ВМВ относят:

1) высокую степень набухания полимера;

2) высокая вязкость раствора;

3) низкую нестабильную величину осмотического давления раствора.

Набухание ВМВ

ВМВ набухают и растворяются в низкомолекулярных жидкостях. Так как подвижность молекул растворителя намного больше подвижности макромолекул, то первой стадией взаимодействия является набухание – проникновение молекул растворителя в структуру ВМВ со значительным увеличением его массы и объема, но с сохранением формы; образуется гель. Если низкомолекулярная жидкость ограниченно растворима в ВМВ, то набухание будет ограниченным, оно не заканчивается образованием текучей системы. Растянутая сетка макромолекул, стремясь сократиться, препятствует увеличению содержания растворителя.

При неограниченной растворимости низкомолекулярной жидкости в полимере его пачки после набухания продолжают раздвигаться и макромолекулы постепенно диффундируют в растворитель, образуя раствор. Такое набухание называют неограниченным.

В синтетических полярных полимерах и белках набухание начинается с сольватации полярных групп. При этом выделяется наибольшее количество теплоты. Установлено, что, например, на 1 г крахмала выделяется 6,6 кал, на 1 г желатина – 5,7 кал. При образовании сольватных слоев поглощается около 20–40% растворителя от массы сухого полимера. Следующая стадия набухания – поглощение десятикратного объема растворителя – объясняется осмотическими явлениями. С термодинамической точки зрения процессы набухания ВМС и растворения низкомолекулярных веществ весьма сходны между собой.

На набухание влияют также такие физико-химические факторы, как температура, рН среды, электролиты и др.

Повышение температуры способствует более быстрому набуханию, так как усиливается движение частиц, что способствует разрыхлению внутренних структур. Для каждого высокомолекулярного вещества и растворителя должна существовать своя критическая температура, выше которой происходит их безграничное смешение.

Изменение рН среды в более кислую или щелочную сторону от изоэлектрической точки коллоида увеличивает степень набухания. Это объясняется появлением положительного и отрицательного заряда у коллоидных частиц и, следовательно, повышением степени гидратации.

Влияние анионов на процесс набухания оценивают с помощью лиотропного ряда Гоффмейстера:

 

SO42- < C6H5O7 3- < C4H4O6 2- < C2H4O2 - < Cl - < NO3 - < Br - < I - < CNS

цитрат тартрат ацетат

 

Как видно из данного ряда, соли серной и уксусной кислот замедляют набухание, а роданид-анионы способствуют набуханию. Из катионов: K+ и Na+ способствуют, а ионы Ca2+ - препятствуют набуханию.

Набухание оценивается по степени набухания массы жидкости, поглощенной 1 г сухого полимера. Степень набухания определяют весовым и объемным методом. Весовым методом определяют массу сухого и набухшего полимера и по разности находят массу поглощенной жидкости. Объемным методом измеряют изменение объема тела при поглощении им жидкости, или объема жидкости, в котором происходит набухание. Степень набухания α вычисляют по уравнению:

 

или , где

 

m0, V0 – масса и объем полимера до набухания

m, V – масса и объем полимера после набухания

 

Набухание имеет большое значение в процессах жизнедеятельности растительных и животных организмов. Прорастанию семян всегда предшествует предварительное набухание. Растительные и животные ткани связывают большое количество воды (соединительная ткань) и содержат коллоиды не только в виде растворов, но и в студнеобразном состоянии (протоплазма клеток, хрусталик глаза и др.).

Чередование в зависимости от рН среды и концентрации электролитов процессов набухания и обезвоживание соединительной ткани влияет на распределение воды, а также ионов между соединительной тканью и клетками.

Набухание и обезвоживание коллоидов наблюдается при самых различных процессах: регенерации тканей, воспалении, образовании отеков, при проникновении кислых жидкостей в ткани, при ожоге кожи крапивой, при укусе насекомых и т.п. Во всех указанных случаях набухание зависит, главным образом, от изменения в тканях рН среды.

 

Вязкость растворов ВМВ

Растворы высокомолекулярных соединений отличаются высокой вязкостью (или внутренним трением), обусловленной силами сцепления между молекулами жидкости.

Количественно вязкость характеризуют коэффициентом вязкости η (этта), Па ∙ с.

Отношение вязкости раствора к вязкости чистого растворителя обозначают относительной вязкостью:

где, η, ρ, τ – вязкость, плотность, время истечения раствора;

η0, ρ0, τ0 – вязкость, плотность, время истечения чистого растворителя.

! В сильно разбавленных растворах ρ ≈ 1г/см3, т.е. плотностью можно пренебречь.

 

Увеличение вязкости, связанное с изменением концентрации при растворении полимера, принято характеризовать удельной вязкостью:

 

η – вязкость раствора;

η0 – вязкость чистого растворителя.

Для линейной (вытянутой) формы макромолекул удельную вязкость рассчитывают по уравнению Штаудингера:

ηуд. = К· М(X) · C(X)

М (Х) – относительная молекулярная масса полимера [а. е. м.];

C (X) – весовая концентрация полимера [г · м-3];

К – константа, характеризующая особенности гомологического ряда полимера.

Величина ηуд/С получила название приведенной вязкости:

 

Предел ηуд/С при С→0 отражает гидродинамическое сопротивление движению молекул полимера и именуется характеристической вязкостью [η].

 

При вискозиметрическом методе определения молекулярного веса полимера вначале устанавливают η0, η; затем рассчитывают ηуд и ηприв для растворов различной концентрации и строят график зависимости приведенной вязкости от концентрации. Эта зависимость представляет прямую, которая при продолжении до пересечения с осью ординат отсекает отрезок, равный [η].

 

 

Рис. Зависимость ηприв от С ВМВ для раствора высокомолекулярного соединения.

 

Уравнение Марка-Хаувинка устанавливает связь между характеристической вязкостью и молярной массой ВМВ.

[η] = К ∙ Мα, где

М – средняя молекулярная масса ВМВ;

К – коэффициент постоянный для растворов ВМВ одного гомологического ряда в данном растворителе;

α – коэффициент, характеризующий гибкость цепей макромолекул в растворе и их форму в зависимости от конформации.

Осмотическое давление растворов ВМВ

В растворах ВМВ осмотическое давление имеет ряд особенностей. Это связано с тем, что макромолекула ВМВ может рассматриваться как совокупность молекул меньшего размера.

Это учитывает уравнение Галлера:

πосм = (СВМВВМВ) ∙ RТ+βС2ВМВ, где

СВМВ – весовая концентрация полимера, г/м3;

β – коэффициент, учитывающий форму, гибкость, размеры макромолекулы.

Если концентрация раствора невелика, то βС2ВМВ → 0, тогда уравнение Галлера переходит в уравнение Вант-Гоффа.

Измеряя осмотическое давление растворов различных концентраций и строя график зависимости πосм/ СВМВ от СВМВ, находят значение молярной массы полимера и коэффициента β.

 

Контрольные вопросы

1. ВМВ. Биополимеры. Белки. Биологическая роль белков и их суточная потребность.

2. Физико-химические характеристики макромолекул белков: молекулярная масса, размер, структура, гибкость.

3. Специфические свойства растворов ВМВ:

а) Набухание. Степень набухания, факторы, влияющие на набухание. Ограниченное и неограниченное набухание.

б) Вязкость. Удельная, приведенная и характеристическая вязкости.

в) Осмотическое давление.

4. Растворы белков. Агрегативная устойчивость белков. Понятие о высаливании, денатурации, коацервации.

5. Влияние рН среды на состав и свойства растворов белков. Изоэлектрическая точка белков и ее значение.

 

Типовые задачи

Задача 1. Определите молярную массу полиметилметакрилата по следующим данным вискозиметрического метода:

Концентрация раствора, кг/м3 1,0 1,2 1,4 1,6 1,8 2,0
Приведённая вязкость раствора ВМС в бензоле 0,408 0,416 0,430 0,434 0,442 0,452

Константы: К = 4,7·10– 8; α = 0,77.

 

Решение:

1. По приведенным данным строим график зависимости ηприв — Сраствора. Методом экстраполяции определяем значение характеристической вязкости ([η]).

В нашем случае [η] ≈ 0,4035.

 

2. Используя уравнение Марка-Хаувинка, находим молярную массу полимера:

 

[η] = К ∙ Мα

lg [η] = lg K + α∙lg M

α∙lg M = lg [η] – lg K

 

lg [η] – lg K lg 0,4035 – lg 4,7·10– 8

lg M = ----------------- = ------------------------------- = 9,005

α 0,77

 

M = 10 9,005 = 1011579454 (кг/моль)

 

Ответ: М = 1011579454 (кг/моль)

Тестовые задания

Выберите правильный вариант ответа

01. НАБУХАНИЕ – ЭТО ПРОЦЕСС ПРОНИКНОВЕНИЯ

1) ВМВ в полимер

2) полимера в ВМВ

3) ВМВ в НМС

4) НМС в ВМВ

 

02. ПРОЦЕСС НАБУХАНИЯ ВМВ ЯВЛЯЕТСЯ

1) самопроизвольным, ΔG > 0

2) несамопроизвольным, ΔG > 0

3) самопроизвольным, ΔG < 0

4) несамопроизвольным, ΔG < 0

 

03. НАБУХАНИЕ БЕЛКОВ ПРОИСХОДИТ ПРИ: А) ВОЗНИКНОВЕНИИ ОТЕКОВ;

Б) СОКРАЩЕНИИ МЫШЦ; В) ПЕРЕВАРИВАНИИ ПИЩИ; Г) ТЕРМИЧЕСКОЙ КУЛИНАРНОЙ ОБРАБОТКЕ ПИЩИ

1) а, б, в

2) а, в, г

3) а, б, в, г

4) а, в

 

04. УВЕЛИЧЕНИЕ ВЯЗКОСТИ КРОВИ ПРОИСХОДИТ ПРИ: А) АТЕРОСКЛЕРОЗЕ;

Б) ВЕНОЗНЫХ ТРОМБОЗАХ; В) ПОВЫШЕНИИ КОНЦЕНТРАЦИИ БЕЛКА В ПЛАЗМЕ; Г) ОТЕКАХ; Д) СНИЖЕНИИ КОНЦЕНТРАЦИИ БЕЛКА В ПЛАЗМЕ КРОВИ

1) а, б, в

2) а, б, в, г

3) а, б, г

4) а, в, г

 

05. ПОЛИСТИРОЛ ЯВЛЯЕТСЯ

1) неорганическим полимером

2) олигомером

3) синтетическим полимером

4) природным полимером

 

06. КРАХМАЛ И ЦЕЛЛЮЛОЗА ЯВЛЯЮТСЯ

1) неорганическим полимером

2) олигомером

3) синтетическим полимером

4) природным полимером

 

07. В ИЗОЭЛЕКТРИЧЕСКОМ СОСТОЯНИИ ПОЛИЭЛЕКТРОЛИТЫ

1) обладают наибольшей устойчивостью

2) имеют наибольшую степень набухания

3) обладают наименьшей устойчивостью

4) обладают электрофоретической подвижностью






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных