ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Домашнее задание №1«Классическая и релятивистская механика» 101. Пассажир электропоезда, движущегося со скоростью 15 м/с, заметил, что встречный поезд длиной 210 м прошел мимо него за 6 с. Определить скорость встречного поезда. 102. При неподвижном эскалаторе метрополитена пассажир поднимается за t1=120 с, а по движущемуся при той же скорости относительно ступенек – за t2=30 с. Определить время подъема пассажира, неподвижно стоящего на движущемся эскалаторе. 103. Определить скорость моторной лодки относительно воды, если при движении по течению реки её скорость 10 м/с, а при движении против течения – 6 м/с. Чему равна скорость течения воды в реке? 104. Скорость поезда, при торможении двигающегося равнозамедленно, уменьшается в течение 1 мин от 40 до 28 км/ч. Найти ускорение поезда и расстояние, пройденное им за время торможения. 105. Движение материальной точки задано уравнением x=at+bt2+ct3, где a=5 м/с, b=0,2 м/с2, с=0,1 м/с3. Определить скорость точки в момент времени t1=2 с, t2=4 с, а также среднюю скорость в интервале времени от t1 до t2. 106. Скорость материальной точки, движущейся вдоль оси х, определяется уравнением VX = 0,2-0,1t (м/с). Найти координату точки в момент времени t=10 с, если в начальный момент времени она находилась в точке x0=1 м. 107. Самолет для взлета должен иметь скорость 100 м/с. Определить время разбега и ускорение, если длина разбега 600 м; движение самолета при этом считать равноускоренным. 108. Автомобиль движется со скоростью V1=25 м/с. На пути S=40 м производится торможение, после чего скорость уменьшается до V2=15 м/с. Считая движение автомобиля равнозамедленным, найти модуль ускорения и время торможения. 109. Первую половину пути тело двигалось со скоростью V1 = 2 м/с, вторую половину пути - со скоростью V2 = 8 м/с. Определить среднюю скорость движения. 110.Точка прошла половину пути со скоростью 10 км/ч. Оставшуюся часть пути она половину времени двигалась со скоростью 18 км/ч, а последний участок - со скоростью 25,2 км/ч. Найти среднюю скорость движения точки. 111. Определить угловое ускорение маховика, частота вращения которого за время N=20 полных оборотов возросла равномерно от n0=1 об/c до n=5 об/с. 112. Определить зависимость угловой скорости и углового ускорения от времени для твердого тела, вращающегося вокруг неподвижной оси z по закону j=at–bt2, где a=20 рад/с, b=1 рад/с2. Каков характер движения этого тела? 113. Колесо радиусом R=10 см вращается с постоянным угловым ускорением e=3,14 рад/с2. Найти для точек на ободе колеса к концу первой секунды после начала движения: 1) угловую скорость; 2) линейную скорость; 3) тангенциальное ускорение; 4) нормальное ускорение; 5) полное ускорение. 114. Твёрдое тело вращается вокруг неподвижной оси по закону j = 6,0 t – 2,0 t3. Найти средние значения угловой скорости и углового ускорения за промежуток времени до остановки. 115. Вентилятор вращается с частотой 600 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки 75 оборотов. Какое время прошло с момента выключения вентилятора до его полной остановки? 116. Колесо вращается с угловым ускорением 2 рад/с2. Через время 0,5 с после начала движения полное ускорение точек на ободе колеса равно 0,15 м/с2. Найти радиус колеса. 117. Велосипедное колесо вращается с частотой n=5 c–1 . Под действием сил трения оно остановилось через Dt=1 мин. Определить угловое ускорение и число оборотов, которое сделало колесо за это время.
118. Ось с двумя параллельными бумажными дисками, расположенными на расстоянии 0,5 м друг от друга, вращается с частотой 1200 об/мин. Пуля, летящая вдоль оси, пробивает оба диска; пробоины в дисках смещены друг относительно друга на угол 15о. Найти скорость пули. Силой тяжести, действующей на пулю, пренебречь. 119. Движение точки по окружности радиусом 4 м задано уравнением 120. Точка движется по окружности радиусом 2 м согласно уравнению S = 2 t3. В какой момент времени нормальное ускорение точки будет равно тангенциальному? Чему будет равно полное ускорение точки в этот момент времени? 121. Тело скользит по наклонной плоскости, составляющей с горизонтом угол a=45°. Зависимость пройденного телом пути от времени задана уравнением S=Ct2, где С=1,73 м/с2. Найти коэффициент трения тела о плоскость. 122. Тело массой 0,5 кг движется так, что зависимость координаты тела от времени t дается уравнением X=Asin(wt), где А=5 см и w=p рад/с. Найти силу, действующую на тело через время t=(1/6) с после начала движения. 123. Невесомый блок укреплен в вершине двух наклонных плоскостей, составляющих с горизонтом углы a=30° и b=45°. Гири 1 и 2 одинаковой массы m1=m2=1 кг соединены нитью и перекинуты через блок. Найти ускорение, с которым движутся гири, и силу натяжения нити. Трением гирь 1 и 2 о наклонные плоскости, а также трением в блоке пренебречь. 124. Самолёт, имея постоянную скорость 360 км/ч, делает «мёртвую» петлю радиусом 500 м. Определить вес лётчика массой 70 кг в нижней и верхней точках петли. 125. К пружинным весам подвешен блок. Через блок перекинули шнур, к концам которого привязали грузы массой 1,5 кг и 3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь. 126. Наклонная плоскость, образующая угол 25о с плоскостью горизонта, имеет длину 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время 2 с. Определить коэффициент трения тела о плоскость. 127. На автомобиль массой 1т во время движения действует сила трения, равная 0,1 действующей на него силы тяжести. Найти силу тяги, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью: а) в гору с уклоном 1 м на каждые 25 м пути; б) под гору с тем же уклоном.
128. На столе стоит тележка массой m1=4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением будет двигаться тележка, если к другому концу шнура привязать гирю массой m2=1 кг? 129. Аэростат массой m начал опускаться с постоянным ускорением а. Определить массу балласта, который следует сбросить за борт, чтобы аэростат получил такое же ускорение, но направленное вверх. Сопротивлением воздуха пренебречь. 130. Небольшое тело пустили снизу вверх по наклонной плоскости, составляющей угол 15о с горизонтом. Найти коэффициент трения, если время подъёма тела оказалось в 2 раза меньше времени спуска. 131. Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого 50 кг×м2 и радиус 20 см. Момент сил трения вращающегося блока равен 98,1 Н×м. Найти разность сил натяжения нити Т1-Т2 по обе стороны блока, если известно, что блок вращается с угловым ускорением 2,36 рад/с. Блок считать однородным диском. 132. На барабан массой m0=9 кг намотан шнур, к концу которого привязан груз массой m=2 кг. Найти ускорение груза. Барабан считать однородным цилиндром. Трением пренебречь. 133. Маховик радиусом 0,2 м и массой 10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения, равна 14,7 Н. Какую частоту вращения будет иметь маховик через время 10 с после начала движения? Маховик считать однородным диском. Трением пренебречь. 134. Однородный диск радиусом 0,2 м и массой 5 кг вращается вокруг оси, проходящей через его центр перпендикулярно к его плоскости. Зависимость угловой скорости вращения диска от времени даётся уравнением w = А + 8 t, где А=const. Найти касательную силу, приложенную в ободу диска. Трением пренебречь. 135. Маховое колесо, момент инерции которого 245 кг×м2, вращается с частотой 20 об / с. Через 1 минуту после того, как на колесо перестал действовать момент сил, оно остановилось. Найти момент сил трения и число оборотов, которое сделало колесо до полной остановки после прекращения действия сил. Колесо считать однородным диском. 136. Однородный стержень длиной 1м и весом 0,5 Н вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением вращается стержень, если вращающий момент равен 9,8 × 10–2 Н×м? 137. Автомобиль идет по закруглению шоссе, радиус кривизны которого равен 200 м. Коэффициент трения колес о покрытие дороги равен 0,1. При какой скорости автомобиля начнется его занос? 138. Однородный диск радиусом 0,2 м и массой 0,5 кг вращается вокруг оси, проходящей через его центр, под действием касательной силы, приложенной к ободу диска. Зависимость угловой скорости диска от времени дается уравнением w=A+Bt, где В=8 рад/с2. Найти величину касательной силы. Трением пренебречь. 139. Найти момент импульса земного шара относительно оси вращения. Радиус земли 6400 км, масса 6 1024 кг. 140. Грузик, привязанный к шнуру длиной 50 см, описывает окружность в горизонтальной плоскости. Какой угол (в градусах) образует шнур с вертикалью, если частота вращения n=1 c–1? 141. Под действием постоянной силы вагонетка прошла путь 5 м и приобрела скорость 2 м/с. Определить работу силы, если масса вагонетки 400 кг и коэффициент трения равен 0,01. 142. Вычислить работу, совершаемую при равноускоренном подъёме груза массой 100 кг на высоту 4 м за время 2 с. 143. На тело, двигавшееся со скоростью 2 м/с, подействовала сила 2 Н в направлении скорости. Через 10 с после начала действия силы кинетическая энергия тела оказалась равной 100 Дж. Найти массу тела, считая его материальной точкой. 144. Найти работу, которую надо совершить, чтобы увеличить скорость движения тела массой 1 кг от 2 до 6 м/с на пути в 10 м. На всём пути действует постоянная сила трения, равная 2 Н. 145. Найти, какую мощность развивает двигатель автомобиля массой в 1000 кг при коэффициенте трения 0,07, если известно, что автомобиль едет с постоянной скоростью 36 км /ч: 1) по горизонтальной дороге, 2) в гору с уклоном 5 м на каждые 100 м пути, 3) под гору с тем же уклоном. 146. Маховик вращается согласно уравнения j = 2+16t–2t2. Момент инерции маховика равен 50 кг×м2. Найти вращающий момент сил и закон, по которому меняется мощность. Чему равна мощность в момент времени 3 с? 147. Ремённая передача передаёт мощность 9 кВт. Шкив передачи имеет диаметр 0,48 м и вращается с частотой 240 об/мин. Натяжение ведущей ветви ремня в два раза больше натяжения ведомой ветви. Найти натяжение обеих ветвей ремня. 147. Якорь мотора вращается с частотой 1500 об/мин. Определить вращающий момент сил, если мотор развивает мощность 500 Вт. 149. Диск массой 1 кг и диаметром 0,6 м вращается вокруг оси, проходящей через центр перпендикулярно его плоскости, делая 20 об/с. Какую работу надо совершить, чтобы остановить диск? 150. Камень, пущенный по поверхности льда со скоростью 2м/с, прошел до полной остановки расстояние S=20,4 м. Найти коэффициент трения камня по льду, считая его постоянным. 151. Человек массой 60 кг, бегущий со скоростью 8 км/ч, догоняет тележку массой 80 кг, движущуюся со скоростью 2,9 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка? С какой скоростью будет двигаться тележка, если человек бежал ей навстречу? 152. Пуля, летящая горизонтально со скоростью 400 м/c, попадает в брусок, подвешенный на нити длиной 4 м, и застревает в нем. Определить угол a, на который отклонится брусок, если масса пули 20 г, а бруска 5 кг. 153. Шар массой 1 кг, катящийся без скольжения, ударяется о стенку, откатывается от неё. Скорость шара до удара 10 см/с, после удара 8 см/с. Определить количество тепла, выделившегося при ударе. 154. Конькобежец массой 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой 3 кг со скоростью 8 м/с. Найти, на какое расстояние откатится при этом конькобежец, если известно, что коэффициент трения коньков о лед равен 0,02. 155. Тело массой 2 кг движется навстречу второму телу массой 1,5 кг и неупруго сталкивается с ним. Скорости тел перед столкновением 1 и 2 м/с соответственно. Сколько времени будут двигаться эти тела после столкновения, если коэффициент трения равен 0,1? 156. Шарик массой 200 г ударился о стенку, имея в момент удара скорость 10 м/с, и отскочил от неё с такой же скоростью. Определить импульс, полученный стенкой, если до удара шарик двигался под углом 30° к плоскости стенки. 157. Два шара массами 2 и 4 кг двигаются со скоростями 5 м/с и 7 м/с соответственно. Определить скорость шаров после прямого неупругого удара, если большой шар догоняет меньший. 158. Шар массой 1,8 кг абсолютно упруго сталкивается с покоящимся упругим шаром большей массы. В результате центрального прямого удара шар потерял 36 % своей кинетической энергии. Определить массу большего шара. 159. Стержень длиной 1,5 м и массой 10 кг может вращаться вокруг неподвижной оси, проходящий через верхний конец стержня. В середину стержня ударяет пуля массой 10 г, летящая в горизонтальном направлении со скоростью 500 м/c, и застревает в стержне. На какой угол отклонится стержень после удара? 160. На покоящийся шар массой 1 кг, подвешенный на длинном жестком стержне, попадает пуля массой 10 г. Угол между направлением полета пули и линией стержня a = 45°. Удар центральный. После удара пуля застревает в шаре и шар вместе с пулей, отклонившись, поднимается на высоту 0,12 м относительно первоначального положения. Найти скорость пули. Массой стержня пренебречь. 161. Найти работу, совершаемую по подъему груза по наклонной плоскости, если масса груза 100 кг, длина наклонной плоскости 2 м, угол наклона 300, коэффициент трения 0,1 и груз движется с ускорением 1м/с2. 162. К ободу диска массой 5 кг приложили постоянную касательную силу 2 Н. Какую кинетическую энергию будет иметь диск через 5 с после начала движения? 163. На краю горизонтальной платформы, имеющей форму диска радиусом 2 м, стоит человек. Масса платформы 200 кг, масса человека 80 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через её центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль её края со скоростью 2 м/с относительно платформы. 164. Платформа массой 240 кг, имеющая форму диска, может вращаться вокруг вертикальной оси. На краю платформы стоит человек массой 60 кг. На какой угол повернется платформа, если человек пойдет вдоль края платформы с постоянной скоростью и, обойдя её, вернется в исходную точку (на поверхности земли)? Момент инерции человека рассчитывать как для материальной точки. 165. Какую работу совершит человек, если он от края вращающейся платформы перейдет в её центр? Масса платформы 100 кг, масса человека 80 кг, первоначальная частота вращения 10 об/мин, радиус платформы 2 м. 166. Диск радиусом 20 см и массой 5 кг вращается с угловой скоростью 8 об/с. При торможении он остановился через 4 с. Определить тормозящий момент сил. 167. Маховик вращается с угловой скоростью 10 об/с, имея кинетическую энергию 7,85 кДж. За какое время момент сил 50 Н×м, приложенный к маховику, увеличит угловую скорость маховика вдвое? 168. Вентилятор вращается с частотой 900 об/мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки 75 оборотов. Работа сил торможения равна 44,4 Дж. Найти момент инерции вентилятора и момент сил торможения. 169. Маховое колесо начинает вращаться с угловым ускорением 0,5 рад/с2 и через 15 с после начала движения приобретает момент импульса 73,5 (кг×м2)/с. Найти кинетическую энергию колеса через 20 с после начала движения. 170. Мальчик катит обруч по горизонтальной дороге со скоростью 7,2 км/ч. На какое расстояние может вкатиться обруч на горку за счет его кинетической энергии? Уклон горки равен 10 м на каждые 100 м пути. 171. Найти скорость электрона, релятивистский импульс которого равен 1,58×10–22 кг×м/с. 172. Какую работу необходимо совершить, чтобы увеличить скорость частицы с массой покоя m0 от 0,6 с до 0,8 с, где с – скорость света в вакууме? 173. Солнце ежеминутно испускает энергию, равную 6,5×1021 кВт–ч. Считая излучение Солнца постоянным, найти, за какое время масса Солнца уменьшится в 2 раза. 174. Частица движется со скоростью 0,5×с, где с - скорость света в вакууме. Во сколько раз масса частицы больше ее массы покоя? 175. Кинетическая энергия протона 10 МэВ. Определить его импульс. 176. При какой скорости движения релятивистское сокращение длины движущегося тела составляет 25 %? 177. Мезон движется со скоростью 0,96×с, где с – скорость света в вакууме. Какой промежуток времени по часам наблюдателя соответствует одной секунде “собственного” времени мезона? 178. C какой скоростью движется частица, если её масса в 4 раза больше массы покоя? 179. Определить скорость тела, при которой его масса возрастает в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями 0,6×c и 0,9×c, где с – скорость света в вакууме.
Варианты
Не нашли, что искали? Воспользуйтесь поиском:
|