ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Моделирование сезонных и циклических колебанийСуществует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Простейший подход — расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий: Y = T + S + E Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (7), сезонной (S) и случайной (E) компонент. Общий вид мультипликативной модели выглядит так: Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (7), сезонной (S) и случайной (Е) компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты. Построение аддитивной и мультипликативной моделей сводится к расчету значений T, S и Ε для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги. 1. Выравнивание исходного ряда методом скользящей средней. Для этого: a) просуммируем уровни ряда последовательно за каждые четыре периода со сдвигом на один момент времени и определим условные показатели; b) разделив полученные суммы на 4, найдем скользящие c) приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних — центрированные скользящие средние. 2. Расчет значений сезонной компоненты S. 3. Устранение сезонной компоненты из исходных уровней ряда и получение выравненных данных (Т+ Е) в аддитивной или (ТЕ) в мультипликативной модели. 4. Аналитическое выравнивание уровней (Т+ Е) или (Τ· Ε) и расчет значений Τ с использованием полученного уравнения тренда. 5. Расчет полученных по модели значений (Т + S) или (Т· S). 6. Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок Ε для анализа взаимосвязи исходного ряда и других временных рядов. 7. Прогнозирование. Прогнозное значение Ft уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Прогнозное значение Ft уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Не нашли, что искали? Воспользуйтесь поиском:
|