Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Структурная и приведенная формы модели.




Система совместных, одновременных уравнений (или струк­турная форма модели) обычно содержит эндогенные и экзоген­ные переменные.

Эндогенные переменные обозначены в приведенной ранее системе одновременных уравнений как у. Это зависимые пере­менные, число которых равно числу уравнений в системе.

Экзогенные переменные обозначаются обычно как х. Это пре­допределенные переменные, влияющие на эндогенные перемен­ные, но не зависящие от них.

Простейшая структурная форма модели имеет вид:

где у - эндогенные переменные;

x — экзогенные переменные.

Структурная форма модели в правой части содержит при эн­догенных и экзогенных переменных коэффициенты b i и аj (b i -коэффициент при эндогенной переменной, аj — коэффициент при экзогенной переменной), которые называются структурными коэффициентами модели. Все переменные в модели выражены в отклонениях от среднего уровня, т. е. под xподразумевается x— а под у — соответственно у - . Поэтому свободный член в каждом уравнении системы отсутствует.

Использование МНК для оценивания структурных коэффи­циентов модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.

Приведенная форма модели (ПФМ) представляет собой систему ли­нейных функций эндогенных переменных от экзогенных.

Коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы мо­дели.

Для структурной модели вида

приведенная форма модели имеет вид






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных