Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Нелинейная регрессия.




Различают два класса нелинейных регрессий:

• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам. К этому классу относятся полиномы различных степеней, равносторонняя гипербола. Параметры определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам.

• регрессии, нелинейные по оцениваемым параметрам. К этому классу относятся следующие функции: степенная, показательная, экспоненциальная и др.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции (R):

 

Величина данного показателя находится в границах: 0 ≤ R ≤ 1, чем ближе к единице, тем теснее связь рассматриваемых призна­ков, тем более надежно найденное уравнение регрессии.

Поскольку в расчете индекса корреляции используется соот­ношение факторной и общей суммы квадратов отклонений, то R2 имеет тот же смысл, что и коэффициент детерминации. В специ­альных исследованиях величину R2 для нелинейных связей назы­вают индексом детерминации.

Оценка существенности индекса корреляции проводится, так же как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существен­ности в целом уравнения нелинейной регрессии по F-критерию Фишера:

где R2 - индекс детерминации;

n - число наблюдений;

т — число параметров при переменных х.

Чтобы иметь об­щее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппрок­симации как среднюю арифметическую простую.

Ошибка аппроксимации в пределах 5—7 % свидетельствует о хорошем подборе модели к исходным данным.

 

 






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных