Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






Методы очистки белков




Наиболее трудоёмкий этап получения индивидуальных белков - их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах.На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка. Очистка белков избирательной денатурацией:Большинство белков денатурирует и выпадает в осадок уже при кратковременном нагревании раствора до 50-70 °С или подкислении раствора до рН 5. Если выделяемый белок выдерживает эти условия, то с помощью избирательной денатурации можно удалить большую часть посторонних белков, отфильтровав выпавшие в осадок-белки, или осадить их центрифугированием .Высаливание:Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония - (NH4)2SO4. Чем выше растворимость белка, тем большая концентрация соли необходима дляего высаливания.

 

19) ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (биокатализ), ускорение биохим. р-ций при участии белковых макромолекул, называемых ферментами (энзимами). Ферментативный катализ- разновидность катализа, хотя термин "ферментация" (брожение)известен с давних времен, когда еще не было понятия хим. катализа.

Первое исследование ферментативного катализа как хим. процесса было выполнено К. Кирхгофом, к-рый в 1814 продемонстрировал фер-ментативную конверсию крахмала в растворимые углеводы.

Заметный вклад в представление о природе ферментативного катализа внесли работы И. Берцелиуса и Э. Мичерлиха, к-рые включили ферментативные р-ции в категорию хим. каталитич. процессов. В кон. 19 в. Э. Фишер высказал гипотезу о специфичности ферментативных р-ций и тесном стерич. соответствии между субстратом и активным центром фермента. Основы кинетики ферментативных р-ций были заложены в работах Л. Михаэ-лиса (1913).

В 20 в. происходит интенсивное изучение хим. основ ферментативного катализа, получение ферментов в кристаллич. состоянии, изучение структуры белковых молекул и их активных центров, исследование большого числа конкретных ферментативных р-ций и ферментов.

В простейшем случае ур-ние р-ции с участием фермента имеет вид:

где E - фермент, S - субстрат, ES - фермент-субстратный комплекс (т. наз. комплекс Михаэлиса), P- продукт р-ции.

Превращение субстрата в продукт происходит в комплексе Михаэлиса. Часто субстрат образует ковалентные связи с функц. группами активного центра, в т. ч. и с группами кофермента (см. Коферменты). Большое значение в механизмах ферментативных р-ций имеет основной и кислотный катализ, реализуемый благодаря наличию имидазольных групп остатков гистидина и карбоксильных групп дикарбоно-вых аминокислот.

Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость хим. превращения субстрата по сравнению с неферментативной р-цией в 109-1012 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен (см. Комплементарность)переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активац. барьер р-ции.

Большинство ферментов обладает высокой субстратной специфичностью, т. е. способностью катализировать превращение только одного или неск. близких по структуре в-в. Специфичность определяется топографией связывающего субстрат участка активного центра.

Активность ферментов регулируется в процессе их биосинтеза (в т.ч. благодаря образованию изоферментов, к-рые катализируют идентичные р-ции, но отличаются строением и каталитич. св-вами), а также условиями среды (рН, т-ра, ионная сила р-ра) и многочисленными ингибиторами и активаторами, присутствующими в организме. Ингибиторами и активаторами могут служить сами субстраты (в определенных концентрациях), продукты р-ции, а также конечные продукты в цепи последоват. превращений в-ва (см. Регуляторы ферментов).

Ферментативные р-ции чувствительны к внеш. условиям, в частности к ионной силе р-ра и рН среды. Влияние т-ры на скорость ферментативной р-ции описывается кривой с максимумом, восходящая ветвь к-рой отражает обычную для хим. р-ций зависимость, выраженную ур-нием Аррениуса. Нисходящая ветвь связана с тепловой денатурацией фермента. Максимум кривой соответствует оптимальной т-ре Tопт, значение к-рой для большинства ферментов лежит в пределах 40-50 0C. Для нек-рых ферментов, особенно ферментов термофильных микроорганизмов, Tопт 80-90 0C. Подробнее о кинетике ферментативных р-ций см. Ферментативных реакций кинетика.

Осн. направления совр. исследований ферментативного катализа- выяснение механизма, обусловливающего высокие скорости процессов, высокую селективность (специфичность действия ферментов), изучение механизмов контроля и регуляции активности ферментов. Оказалось, в частности, что р-ции ферментативного катализа включают большое число стадий с участием лабильных промежут. соед., времена жизни к-рых изменяются в нано- и миллисекундном диапазонах. На активных центрах ферментов протекают быстрые (нелимитирующие) стадии, в результате чего понижается энергетич. барьер для наиб.трудной, лимитирующей стадии.

Установлен механизм регулирования ферментативной активности путем действия ингибитора (или активатора) на специфичный центр белковой молекулы с опосредованной передачей воздействия на активный центр фермента через белок. Обнаружены эффекты кооперативного взаимод. неск. молекул субстрата на белковой матрице. Найден способ "жесткого" выведения фермента из процесса посредством индуцированной субстратом необратимой инактивации.

Ферментативный катализ- основа мн. современных хим. технологий, в частности крупномасштабных процессов получения глюкозы и фруктозы, антибиотиков, аминокислот, витаминов и регуляторов, а также тонкого орг. синтеза. Разработаны методы, позволяющие проводить ферментативные р-ции в орг. р-ри-телях, обращенных мицеллах (см. Мицеллообразование). С ферментативным катализом связаны перспективы развития иммуноферментного и биолюминесцентного анализа, применения биосенсоров. Созданы методы, позволившие придать каталитич. активность антителам, обнаружена каталитич. активность у рибонуклеи-новой к-ты (абзимы, рибозимы соотв.).

Механизмы катализа

Доноры Акцепторы

-СООН-СОО-

-NH3+ -NH2

-SH -S-

 

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

 

 

20) Изучение ферментов показало, что они обладают св-ми белков. Какие св-ва характерны для ферментов?

1) они являются амфотерными

2)осаждаются сульфатом аммония т.е. высаливаются

3) инактивируются при нагревании под действием концентрированных кислот и щелочей

4) неспособны проходить через полупроницаемые мембраны.

Абсолютным доказательством белковой природы ферментов - это синтез их из отдельных аминокислот. Сегодня синтезированы из отдельных аминокислот несколько ферментов. Первыми ферментами синтезированные рибонуклеазы (ферменты расщепляющие РНК) и пепсин (основной фермент желудочного сока). Причем синтезированный рибонуклеаза и пепсин ничем не отличались по свойствам по каталитической активности от выделенных из естественных тканей. По хим. составу ферменты как и белки могут быть двух видов - простые и сложные (протеины и протеиды). Несколько слов о протеинах. Они могут состоять из одной полипептидной цепи (рибонуклеаза содержащая 124 ам. ксл. отатка, пепсин, трипсин) В то же время ряд ферментов состоят из нескольких полипептидных цепей т.е. являются олигомернымн белками. Например альдолаза - фермент гликолиза, РНК-полимераза и др. К первой группе относятся обычно класс гидролиз, практически все гадролитические ферменты состоят только из аминокислот т.е. являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. сложными белками т.е. для каталитической активности многих ферментов кроме белковой части необходим второй компонент получивший название кофактор. Есть каталитически активный фермент вместе с кофактором получил название холофермент. Это каталитически активный фермент состоящий из белковой и небелковой части кофактора. Белковая часть холофермента получила название апофермент. Характерной особенностью холофермента или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью.

Функциональные центры - участки поверхности молекулы фермента ответственное за взаимодействие с др белками, причем белками или обладающими каталитической активностью (ферментами) или белками, не обладающими каталитической активностью

Подобного рода взаимодействия встречаются при формировании надмолекулярных мультиферментных комплексах. Те комплексы о которых мы говорили (пируватдегдрогеназные, альфакетоглюторатгидрогеназные) синтетазы высших жирных кислот) включают несколько ферментов. Дело в том, что включение нескольких ферментов в этом комплексе достаточно в заметной степени сказывается на каталитической активности других ферментов этого комплекса.

Почему? Дело в том, что пространственная структура свободного фермента и фермента включенного в комплекс меняется, а значит, меняется и каталитическая активность. Субстраты в превращении которых участвуют ферменты по сравнению с самим ферментом очень часто очень мелкие молекулы, понятно, что в образовании энз-субс. комплекса участвует не вся мол-ла фермента, а только какой-то ее участок, какая-то часть ее поверхности. Этот участок пов-ти фермента ответственный за связывание и превращение субстрата и получил название активного центраВ структуру актив, центра входят: в его образование принимают участие не более 10-15 ам.к. остатков определенных образом ориентированных в пространстве по отношению друг к другу. Эти остатки могут далеко располагаться в полипептидной цепи, могут сближаться при формировании третичной структуры.Хемотрипсин принимают участие 4 ам.к. остатка: 2 остатка гистидина (57,40), серин (195), аспартат (102). Составн. элем, актив, центра часто относится участок остова полипептидной цепи удержив. ам.к. радик. в определенном положении друг к др.

В активный центр фермента входят кофакторы (исключ. некот. ионов металлов). В активном центре условно выделяют 2 участка: а) субстратный - отвечает за связывание субстрата

б) каталитический центр - участок осуществляющий катализ связав.субстрата. Сюда входит кофактор. Кофактору и функ гр. присуща большая роль.В составе многих ферментов так же кроме активных центров имеются регуляторные центры.а) Аллостерический центр б) Центр ковалентной модификации в) Центр связывания с белками и регуляторами .Аллостер. центр - центр, находящийся в другом месте от активного центра - участок на пов-ти фермента образованный определенным образом ориентированных ам.к. радикалов. Его 3 мерная структура комплементарна низкомолекулярным лнгандам - кот.выступают в качестве регуляторов. цАМФ, АТФ. Присоединение аллост. модуляторов к аллост. центру приводит к изменению конформации белка, что сопровождается изменением пространственной структуры ферм, и изменен, к катализу. 1. Если присоединение модулятора повышает активность - аллостерич. активатор 2. Если понижает - аллостер ингибитор. Связыв. модул, с актив, центром - обратима. Никогда не возникает ковалентная связь. Активность определяется концентрацией модуляторов. Аллостер ферм, имеют как правило 4 структуру. Один и тот же фермент имеет 2 и более актив, центра кот комплемент, разный модуляторам.Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому какого-то низкомолекулярного вещества изменяется третичная структура белковой молекулы фермента, что влечет за собой изменение его активности. Аллостерический центр является регуляторным центром фермента.

 

21) Все Ферменты разделяются на две большие группы: однокомпонентные, состоящие исключительно из белка, и двухкомпонентные, состоящие из белка, называемого апоферментом, и небелковой части, называемой простетической группой. Апофермент двухкомпонентных Ферменты называют также белковым носителем, а простетическую группу – активной группой. Благодаря работам О. Варбурга, А. Теорелля, Ферменты Линена, Ферменты Липмана и Л. Лелуара установлено, что простетические группы многих Ферменты представляют собой производные витаминов или нуклеотидов. Т. о. была открыта важнейшая функциональная связь междуФерменты, витаминами и нуклеотидами, являющимися строительными «кирпичиками» нуклеиновых кислот.

Простетическая группа — небелковый (и не производный от аминокислот) компонент, связанный с белком, который выполняет важную роль в биологической активности соответствующего белка. Простетические группы могут быть органическими (витамины, углеводы, липиды) или неорганическими (например, ионы металлов).Простетические группы прочно связаны с белками и даже могут быть присоединены ковалентными связями. Часто играют важную роль в функционировании ферментов. Белок без простетической группы называется «апобелок», а белок с присоединенной группой — «холобелок» (или, соответственно, в случае ферментов — апофермент и холофермент).Примером может являться гем, который является простетической группой в молекуле гемоглобина.Простетические группы — это подкласс кофакторов. Они отличаются от коферментов тем, что простетические группы постоянно связаны с ферментами, в то время как коферменты связаны с ферментами непостоянно.

Коферменты — это органические вещества, как правило, аминокислотной природы, непосредственно участвующие в катализе в составе фермента. Простые, относятся обычно к классу гидролаз, практически все гидролитические ферменты состоят только из

аминокислот, т.е. являются простыми белками. Кроме того, некоторые лиазы, а вот все остальные классы ферментов в основном явл. сложными белками, т.е. для каталитической активности многих ферментов кроме белковой части необходим второй компонент получивший название кофактор. Есть каталитически активный фермент вместе скофактором получил название холофермент. Это каталитически активный фермент, состоящий из белковой и небелковой части кофактора. Белковая часть холофермента получила название апофермент.Характерной особенностью холофермента или сложных ферментов протеидов является, то, что ни белковая часть апофермента, ни кофактор в отдельности не обладают заметной каталитической активностью. Какую же роль выполняют тот и другой?Оказывается апофермент резко повышает каталитическую активность кофактора, а кофактор в свою очередь стабилизирует белковую часть, делает ее более устойчивой и менее уязвимой к денатурирующим агентам. Поэтому встает вопрос, что и какие вещества явл. кофакторами?Роль кофакторов, как выяснилось, играют большинство витаминов или соединений построенных с их участием, но не только витамины выступают в роли кофакторов. Кроме того, это некоторые полипептиды, группы нуклеотидов и их производные и, наконец, ионы некоторых металлов. Последние годы в соответствии с химической природой кофакторов появилась классификация: 1) Кофакторы жирного ряда (глютатион, липоевая кислота, долихол фосфат). 2 Кофакторы алифатического ряда (убихинон или коэнзим Q). 3) Кофакторы гетероциклического ряда а) содержащие витамины (B1) тиоминлирофосфат (В6) перидоксальфосфат (В7) биоцетин (В9) тетрогидрофолат содержащий фоливую кислоту (фолиум - лист) 6) не содержащие витаминов геминовые кофакторы. Основой этих кофакторов является гемовое железо 4 Кофакторы-нуклеотиды а) содержащие витамины содержащие витамин В2 (флавинмононуклеотид) (фляос - желтый) (флавинадениндинуклеотид) НАД, НАДФ (РР или В5) HSKoA (пантотеновая кислота ВЗ) Кобамидные коферменты (В 12) содержат кобальт б) нуклеотиды не витамины АТФ,

уридиндифосфорноглюкуроновая кислота (УДФК), фосфоаденозинфосфосульфат (ФАФС) - активная фосфорная кислота, (ЦТФ) цитидинтрифосфорная кислота. Ф-ции: АТФ участвует в переносе адениловой и фосфорной кислоты, участвует в реакциях аденилирования и фосфолирирования ФАФС участвует в переносе сульфогрупп УДФК участвует в переносе глюкуроновой кислоты ЦТФ участвует в активации холина и фосфотидной кислоты. Процессы идущие при биосинтезе фосфолипидов. 5 Кофакторы ионов металлов Fe, Mn, Zn, К, Na, Mg, Ca, Сu.

 

22),23). Важным фактором, от которого зависит скорость фермента-тивной реакции (равно каталитическая активность фермента) является температура, видно, что с повышением температуры до определенной величины скорость реакции увеличивается. Это можно объяснить тем, что с повышением температуры движение молекул ускоряется и у молекул реагирующих веществ оказывается больше возможности столкнуться друг с другом. Это увели-чивает вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую скорость реакции, называется о п т и м а л ь н о й температурой. Каждый фермент имеет свою оптимальную температуру. В общем для ферментов животного происхождения она лежит между 37 и 40ОС, а растительного - между 40 и 50ОС. Однако есть и исключения: -амилаза из проросшего зерна имеет оптимальную температуру при 60ОС, а каталаза - в пределах 0 - 10ОС. При повышении температуры сверх оптимальной скорость ферментативной реакции снижается, хотя частота столкновений молекул увели-чивается. Происходит это вследствие денатурации, т.е. потери ферментом нативного состояния. При температуре выше 80ОС большинство ферментов полностью теряют свою ка-талитическую активность.Снижение скорости ферментативной реакции при температурах, превышающих оптимальную, зависит от денатурации фермента. Поэтому важным показателем, характеризующим отношение фермента к температуре, является его термолабильность, т.е. скорость инактивации самого фермента при повышении темпера-туры.При низких температурах (0 ОС и ниже) каталитическая актив-ность ферментов падает почти до нуля, но денатурация при этом не происходит. С повышением температуры их каталитическая активность вновь восстанавливается. Важным фактором, оказывающим большое влияние на скорость ферментативной реакции, является рН среды. Для каждого фермента существует оптимальное значение рН, т.е. такая величина рН, или зона рН, при которой катализируемая ферментом реакция протекает с наибольшей скоростью. При высокой концентрации субстрата и при постоянстве других факторов, таких, например, как температура и рН, скорость ферментативной реакции пропорциональна концентрации фермента.

Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.. Факторы, влияющие на скорость биохимических процессов

Кинетика биохимических процессов зависит от ряда факторов: химической природы реагирующих веществ, концентраций фермента и субстрата, температуры и рН среды, наличия активаторов и ингибиторов.Скорость биохимических процессов зависит от природы субстрата и его атакуемости. Под атакуемостъю понимают его податливость действию фермента, которая зависит от структуры субстрата. Например, атакуемость амилазами крахмала, полученного из зерна различных культур или из разных частей одного и того же зерна, неодинакова. Она увеличивается с уменьшением размера крахмальных зерен, т.е. с увеличением их относительной поверхности, а также при механическом воздействии на структуру зерен крахмала, например, при длительном помоле зерна. Однако действие амилаз на неизмененный крахмал или на механически поврежденный весьма незначительно по сравнению с их действием на клейстеризованный крахмал. Поэтому в тех отраслях пищевой промышленности, где крахмал служит источником образования сахаров за счет расщепления его амилолитическими ферментами, для увеличения степени осахаривания чаще всего его клейстеризуют путем заваривания муки. Подобная обработка субстрата применяется в спиртовой, хлебопекарной (при производстве заварного хлеба, для улучшения качества пшеничной муки, при получении питательной среды для жидких дрожжей), в паточной промышленности.Атакуемость белка протеиназами зависит от строения белковой молекулы: чем плотнее и прочнее структура белка, тем ниже его атакуемость ферментами. Количество в молекуле определенных химических групп, например, сульфгидрильных, аминных и др., влияет на атакуемость белка. Если эти группы каким-то образом блокировать, то меняется атакуемость субстрата ферментами. При восстановлении дисульфидных групп белка пшеницы в сульфгидрильные увеличивается атакуемость белка и возрастает скорость его расщепления.

 

Скорость биохимических процессов зависит от концентраций самого фермента и реагирующих веществ. При избытке субстрата скорость реакции определяется прежде всего концентрацией фермента: чем она выше, тем быстрее идут реакции.При невысоких концентрациях субстрата зависимость скорости реакции от концентрации участвующих в реакции веществ носит линейный характер, т.е. с увеличением концентрации субстрата она возрастает. Однако по мере увеличения концентрации реагирующих веществ скорость реакции замедляется, достигает максимального значения и в дальнейшем остается постоянной. В то же время большие концентрации субстрата могут выполнять роль ингибитора. В итоге скорость реакции падает.Наиболее существенное влияние на активность ферментов и скорость биохимических процессов оказывают температура и реакция среды. С повышением температуры активность ферментов возрастает, достигает максимума, а затем снижается. Оптимальной для действия фермента является та температура, при которой его активность наибольшая. Температурный оптимум для ферментов растительного происхождения составляет около 40-500С. Снижение активности фермента при высоких температурах связано с процессами денатурации белка. Полное прекращение деятельности фермента происходит при температурах, близких к 1000С, однако это не относится к термофильным ферментам, которые выдерживают кратковременное нагревание при температуре выше 1000С.Каждый фермент проявляет свое действие в узких пределах значений рН. В определенной зоне активность фермента наибольшая, эта зона называется оптимальной зоной рН. Разные ферменты сильно отличаются по оптимальным для их действия значениям рН. Одни из них имеют наибольшую активность в кислой среде, другие - в нейтральной, третьи - в щелочной. Пепсин желудочного сока имеет оптимум действия при рН 2,0, солодовая α-амилаза - при рН 4,7-5,2. Оптимальное значение рН для действия ферментов зависит в основном от субстрата. Например, при действии папаина на желатин оптимальное значение рН 5,0, а при действии на денатурированный яичный альбумин - 7,5.Скорость биохимических процессов может быть увеличена в присутствии активаторов. Многие ферменты активизируются под действием соединений восстанавливающего действия, в частности, веществами, содержащими сульфгидрильные группы: цистеином, глютатионом. Последний может быть представлен в двух формах: окисленной и восстановленной, активатором является восстановленная форма. Активизирующее действие этих соединений основано на том, что они восстанавливают дисульфидные связи фермента в сульфгидрильные, необходимые для проявления ферментом своей каталитической активности, а сами при этом окисляются за счет превращения сульфгидрильных связей в дисульфидные.Существуют и ингибиторы ферментов, подавляющие их активность. Действие ингибиторов основано на блокировании сульфгидрильных связей фермента и превращении их в дисульфидные группы. Ингибирование фермента может происходить под действием так называемых белковых осадителей - веществ, образующих с белками нерастворимые осадки. Такими веществами являются соли тяжелых металлов (свинца, ртути, вольфрама), трихлоруксусная кислота и др. Эти соединения не являются специфическими, и любое из них может быть использовано для осаждения фермента и полного прекращения его действия. Однако существуют специфические ингибиторы. Оксид углерода СО, например, ингибирует ряд окислительно-восстановительных ферментов, в состав которых входит железо или медь.

 

 

24) Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок» В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата[9]. Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок»[10]. Ферменты, в основном, — не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

 

 

25) Изоферменты, или изоэнзимы — это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах.Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.Примером фермента, имеющего изоферменты, является гексокиназа, имеющая четыре изотипа, обозначаемых римскими цифрами от I до IV. При этом один из изотипов гексокиназы, а именно гексокиназа IV, экспрессируется почти исключительно в печени и обладает особыми физиологическими свойствами, в частности её активность не угнетается продуктом её реакции глюкозо-6-фосфатом.Ещё одним примером фермента, имеющего изоферменты, является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Это послужило основой для разработки и применения более надёжного метода диагностики острого панкреатита путём определения не общей амилазы плазмы крови, а именно панкреатической изоамилазы.Третьим примером фермента, имеющего изоферменты, является креатинфосфокиназа — изотип этого фермента, экспрессируемый в сердце, отличается по аминокислотной последовательности от креатинфосфокиназы скелетных мышц. Это позволяет дифференцировать повреждения миокарда (например, при инфаркте миокарда) от других причин повышения активности КФК, определяя миокардиальный изотип КФК в крови. Однако по ряду свойств изоферменты могут различаться, например по молекулярной активности, по кинетике реакции, по способам регуляции, по стабильности. В основе особенностей изо-ферментов лежат генетически обусловленные различия их первичной структуры, обычно небольшие. Формы ферментов, образующиеся в результате модификации их молекул уже после синтеза, не называют изоферментами. Например, не являются изоферментами фосфорилированная и дефосфорилированная липазы жировой ткани.

 

 

26). Современная классификация и номенклатура ферментов.

1) тривиальная номенклатура 2) рабочая номенклатура З) систематическая номенклатура, т.е. обычно для названия одного и того же фермента очень часто используют несколько названий, поэтому в следствии все возрастающего числа вновь открываемых ферментов было принято международное соглашение о систематической номенклатуре ферментов. В соответствии с этой системой все ферменты в зависимости от типа катализируемой реакции, я еще раз подчеркиваю что в основу положен тип катализируемых реакций, делят на 6 больших классов. В каждом классе выделяют подкласс. В подклассе выделяют под подкласс, а уже там соответственно название конкретного фермента. Шифр фермента для того что бы было понятно о каком ферменте говорит китаец если его читает русский. Например 4 буквенное обозначение 1 -ая класс, 1 подкласс, 1 под подкласс и первый порядковый номер в этом под подклассе, т.е. шифр фермента всегда включает 4-ех цифровое обозначение.Какие же классы по международному соглашению 1961 г. выделяют? а). Оксидоредуктазы - ферменты катализирующие окислительно-восстановительные реакции в организме человека б). Трансферазы - ферменты катализирующие реакции с переносом групп между различными веществами. Например переносящие метильную группу - метилтрансферазы, аминогруппу переносящие - аминотрансферазы и т.д. в). Гидролазы - ферменты катализирующие реакции гидролиза (гидролиз - расщепление с присоединением воды Гидролитических ферментов достаточно много. С пищей мы получаем полимеры, для того чтобы они всасывались их нужно расщепить до мономеров. г). Лиазы -1. ферменты катализирующие присоединение групп по двойной связи (имеется ввидупо месту разрыва двойной связи). 2. Разрыв углерод - углеродной связи, водородными иегидролитическим путем. Например, фермент декарбоксилаза, отщепляющая карбоксильную группу от аминокислоты, как раз относится к лиазам. д). Изомеразы - ферменты катализируют реакции изомеризации. В основном это перенос групп внутри молекул с образованием изомерных форм. Например превращение глюкозы 1- фосфат в глюкозу 6 -фосфат, т.е перенос фосфорильного остатка от первого.е). Лигазы или синтетазы - ферменты которые катализируют образование связи С-С, C-S, C-N, С-О за счет реакции конденсации сопряженных с использованием АТФ, т.е это реакции эндоорганические,требующие притока энергии/ В настоящее время идентифицировано более 2000 различ. ферментов, причем 200 из них получены и используются достаточно хорошо в кристаллическом виде. В наше время ферменты используются не только в медицине, но и в пищевой и хим. промышленности, в народном хоз-ве, для получения особо чистых препаратов (лекарств). Ферменты -специализированные белки обладающие каталитической активностью, т.е. способны ускорять течение химической реакции в организме человека. Ферменты, будучи биокатализаторами, отличаются от обычных катализаторов. Каково значение ферментов в организме человека? Ферменты по праву считают рабочим аппаратом ген. Дело в том, что как реализуют этот фермент? Все зависит от того насколько активны у вас ферменты полученные. Не секрет что сидящие здесь имеют одни и те же ферменты, но ферменты работают у каждого индивидуально. У каждого из нас поддерживается 1. Определенная концентрация ферментов. 2. Поддерживается еще и за счет синтеза активность определенных ферментов, поэтому метаболизм наш в целом очень различается.Ферменты по праву считают функциональными единицами клеточного метаболизма, поскольку большинство реакций протекающих в наших клетках (ежесекундно в наших клетках протекает десятки тысяч разнообразных химических превращений) идут с участием ферментов, за редким исключением. Только в том случае если в ходе реакции образуется какое-то неустойчивое соединение его стабилизация происходит самопроизвольно т.е. не ферментативным путем. Поэтому изучение ферментов имеет огромное значение для понимания метаболизма, для понимания патологий которые могут развиться у человека. Ферменты осуществляют превращение таким образом огромного кол-ва вещ-в, причем в-в поступающих из внешней среды и в-в образующихся в ходе метаболизма, т.е. непосредственно внутри организма.Некоторые болезни человека особенно генетически обусловленные заболевания связаны с недостаточностью или полным отсутствием того или иного фермента.Энзимопатии - патология, причем она может быть наследственная и врожденная поскольку вообще энзимопатии делятся на первичные и вторичные. Первичные - врожденные, наследуемые. Энзимопатия это патология связанная с нарушением синтеза, т.е. синтез прежде всего ферментов недостаточно активных или полным блоком синтеза какого-то фермента Пример врожденной энзимопатии - фенилкетонурия (правильней - фенилпировиноградноолигоприния) т.е. олигос фреиус в переводе на русский - слабоумие связанное с нарушением превращения фенилаланина, дело в том, что и фенилаланина синтезируются гормоны такие как йодированный тиронин, адреналин, хлорадреналин, поэтому те нарушения которые возникают при нарушении оксидинации фенилаланина.С другой стороны патологические состояния, с которыми мы встречаемся, могут быть вызваны избыточной активностью того или иного фермента. В таких случаях удается подобрать препарат ингибирующий активность фермента тем самым помочь больному. Ингибиторы ферменты используются достаточно широко, в том числе и в стоматологии. Очень часто многие лекарственные препарата реализуют свои эффекты воздействуя на ферменты. Измерение активности ферментов плазмы крови, биопсированных тканей имеет огромное значение при диагностики заболевания, а так же контроля за эффективностью проводимого лечения. Часть ферментов используется в качестве лечебных препаратов.

 

 

27) Трансферазы. К классу трансфераз относятся рассмотренные выше аминотрансферазы и ацилтрансферазы, а также метилтрансферазы, гликозилтрансферазы, фосфотрансферазы и др. В подкласс фосфотрансфераз входят группа ферментов, называемых киназами: они используют аденозинтрифосфорную кислоту (АТФ) в качестве донора фосфатного остатка.Киназы катализируют перенос у-фосфатного остатка на другие вешества; АТФ при этом превращается в АДФ. Например, глицеринкиназа катализирует фосфорилирование глицерина но а-гидроксильной группе: В результате действия разных киназ в организме синтезируются многочисленные фосфорилированные соединения. В частности, сложные белки фосфопротеины образуются при участии протеинкиназ, остатки фосфорной кислоты присоединяются к гидроксильным группам серина, треонина и тирозина пептидной цепи:Все киназы для проявления максимальной активности нуждаются в ионах Mg2+ или Мn2+.

28) Оксидоредуктазы.

Класс оксидоредуктаз включает ферменты, катализирующие окислительно-восстановительные реакции разных типов. В частности, в него входят НАД-зависимые и флавиновые дегидрогеназы, рассмотренные выше.Другой тип оксидоредуктаз — оксидазы. Эти ферменты катализируют окисление субстратов путем присоединения кислорода. Так, аминоксидазы окисляют амины с образованием альдегидов и аммиака.Образующийся в таких реакциях пероксид водорода разлагается тоже оксидоредуктазой — каталазой (гемопротеин): 2Н202 → 02+2Н20

29) Гидролазы. Эти ферменты катализируют реакции расщепления разнообразных связей с присоединением воды по месту расщепления:К классу гидролаз относятся эстеразы, расщепляющие сложноэфирные связи (например, липаза, холинэстераза); пептидазы, или пептидгидролазы (пепсин, трипсин, карбоксипептидаза и до.) гликозидазы, гидролизующие гликозидные связи, и т д.

a)

 

Б)

30) Изомеразы – ферменты, катализирующие изомерные превращения в пределах одной молекулы. Изомеразы – сложные ферменты. К их коферментам относятся пиридоксальфосфат, дезоксиаденозилкобаламин, глутатион, фосфаты моносахаридов (глюкозо-1,6-дифосфат) и др.

Выделяют 6 подклассов изомераз в зависимости от типа реакции. Например, в первый подкласс выделяют рацемазы (обратимое превращение L- и D-стереоизомеров) и эпимеразы (превращения изомеров, имеющих более одного центра асимметрии, например, α-D-глюкозу в β-D-глюкозу).

А) фермента аланин-рацемазы

 

 

31) Лиазы.

Класс ферментов, катализирующих р-ции, в результате к-рых происходит разрыв связи С—С, С—О, С—N или др., сопровождающийся образованием двойных связей, а также обратные р-ции - присоединения по двойным связям. Разрыв связи в этих р-циях не сопряжен с гидролизом или с окислит.-восстановит. превращениями. В тех случаях, когда преобладающей является р-ция присоединения, ферменты наз. синтазами. Подклассы лиаз сформированы по типу расщепляемой связи, подподклассы - по природе элиминируемой в результате р-ции молекулы (СО2, Н2О).

· Углерод-углерод лиазы катализируют расщепление связи С—С. В этот подкласс входит обширная группа карбокси-лиаз, катализирующих р-цию декарбоксилирования с элиминированием СО2. Карбокси-лиазы играют важную роль во мн. превращениях в-в, напр. в процессах гниения.

· Альдегид-лиазы, или алъдолазы, катализируют альдольную конденсацию и обратную ей р-цию. Эти ферменты играют важную роль в обмене углеводов. Лиазы кетокислот (напр., изоцитрат-лиаза) катализируют синтез ди- и трикарбоновых к-т из двух и более фрагментов. Мн. из них играют важную роль в цикле трикарбоновых к-т и в глиоксилатном цикле.

· Углерод-кислород лиазы катализируют р.-ции, протекающие с расщеплением связи С—О.

· Углерод-азот лиазы катализируют расщепление связи С—N.

· Углерод-сера лиазы катализируют расщепление связи С—S.

· Фосфор-кислород лиазы катализируют отщепление пирофосфорной к-ты от нуклеозидтрифосфатов.

Существует еще неск. подклассов лиаз, к-рые представлены небольшим кол-вом ферментов. Сюда можно отнести углерод - галоген лиазы,феррохелатазу, катализирующую присоединение ионов Fe к молекуле гема, и др.

 

32) Лигазы

(синтетазы), класс ф-тов, кат-ющих присоединение друг к другу 2 мол-л; р-ция сопряжена с расщепл пирофосфатной связи в мол-ле нуклеозидтрифосфата (НТФ) - обычно АТФ, реже гуанозин- или цитозинтрифосфата. П/кл лигаз (их 5) сформир-ны по типам связей, к-рые обр-ются в результате р-ции, а подп/кл - по типам субстратов. К лигазам, кат-ющим р-ции, в к-рых обр-ются связи С—О, относ аминоацил-тРНК-синтетазы, кат-ющие ацилированиетранспортных РНК соотв-ующими АМКами. Обр-ние связи С—S кат-руют ф-ты, уч-ющие в синтезе ацильных производных коф-та А. К ф-там, уч-ющим в обр-нии связи С—N, относ амидсинтетазы (кат-ют обр-ние амидов из к-т и NH3 или аминов, напр. глутаминсинтетаза), пептидсинтетазы (кат-ют обр-ние пептидной связи), циклолигазы (кат-уют обр-ние гетероциклов, содержащ в кольце атом N) и нек-рые другие. Р-ции, в результате к-рых обр-ется связь С—С, кат-ют карбоксилирующие ф-ты, содержащие в кач-ве кофактора биотин, напр. пируваткарбоксилаза. Ряд лигаз кат-ет обр-ние фосфодиэфирных связей в НК.

 

 

33, 34) Трансферазы

ТРАНСФЕРАЗЫ - класс ферментов, катализирующих перенос фрагментов молекул (напр., метила) с одного соед. (донора) на др. соед. (акцептор). Во мн. случаях промежут. донором является кофермент, присоединяющий группу, подлежащую переносу.Подклассы трансфераз (их 8) различают по характеру групп, переносимых на акцептор. К подклассу трансфераз, катализирующих перенос одноуглеродных фрагментов, относятся метил-трансферазы, трансферазы гидроксиметильных, и др. родственных групп, карбоксил- и карбамоилтрансферазы; эти ферменты играют важную роль в функционировании генетич. аппарата клетки. Известны также трансферазы, катализирующие метилирование жирных к-т, ненасыщ. фосфолипидов, полисахаридов и др. Многие трансферазы, катализирующие перенос гидроксиметильных и формильных остатков (напр., серин-гидрокси-метилтрансфераза), содержат в качестве кофермента пирид-оксальфосфат. В отдельный подкласс объединяют трансферазы, катализирующие перенос альдегидных и кетонных групп. В него входит, напр., транскетолаза.

Подкласс трансфераз составляют ацилтрансферазы, катализирующие перенос ацильной группы с образованием эфиров и амидов. Донором в этих р-циях обычно является ацилкофермент А. Р-ции, катализируемые этими трансферазами, наиб.характерны для метаболизма жирных к-т. Акцепторами ацетила м. Б. аминокислоты, глюкозамин, остаток фосфорной к-ты. К отдельному подклассу относят трансферазы, катализирующие перенос гликозильных остатков (гликозилтрансферазы). Нек-рые из этих трансфераз обладают также гидролитич. активностью, к-рая может рассматриваться как перенос гликозильного остатка на молекулу воды. Акцептором может служить также Н3РО4 в случае фосфорилаз. Наиб.распространен перенос остатка углевода от олигосахарида или богатого энергией метаболита на др. молекулу углевода. К наиб.изученным трансферазам этого подкласса можно отнести ферменты синтеза гликогена. В отдельный подкласс объединяют трансферазы, катализирующие перенос алкильных групп (отличающихся от СН3), как замещенных, так и не замещенных. Хорошо изученные трансферазы этого подкласса-глутатионтрансферазы, катализирующие перенос разл. остатков на глутатион, а также метионин-аденозил- и енолпируват-трансфераза. Трансферазы, катализирующих перенос групп, содержащих атом N: ответственны за перенос аминогрупп. Аминотрансферазы катализируют перенос аминогруппы с аминокислот на 2-оксокислоты. Наиб. изученный фермент этого подкласса-аспартатаминотрансфераза, содержащая в качестве кофермента пиридоксальфосфат.Важный подкласс трансфераз- ферменты, катализирующие перенос групп, содержащих атом P (этот подкласс наз. киназами). Большинство ферментов этого подкласса относятся к фосфотрансферазам, катализирующим перенос остатка фосфорной к-ты на разл. Акцепторы; катализируют также перенос нуклеотидных фрагментов (нуклеотидилтрансферазы); напр., РНК-полимеразы осуществляют перенос остатков рибонуклеотидов при синтезе РНК. В подкласс трансфераз объединены также ферменты, катализирующие перенос фрагментов, содержащих атом S (напр., арилсульфотрансфераза катализирует перенос сульфогруппы на производные фенола).

 

 

35) Протеолитические ферменты (синоним: протеазы) — белки, пептид-гидролазы, ферменты класса гидролаз, расщепляющие пептидные связи между аминокислотами в белках и пептидах.
Протеолитические ферменты играют важнейшую роль в переваривании белков пищи в желудке и кишечнике человека. Большинство протеолитических ферментов органов пищеварения продуцируется в виде проферментов. Физиологический смысл этого заключается в том, чтобы акт продукции фермента (профермента) был отделен от акта его активации — превращения в фермент и, таким образом, белки тканей, продуцирующих ферменты, не подвергались воздействию этих самых ферментов. Классификация протеолитических ферментов

Протеазы подразделяются на: экзопептидазы (пептидазы), гидролизующие (расщепляющие), преимущественно, внешние пептидые связи в белках и пептидах и эндопептидазы (протеиназы), гидролизующие, преимущественно, внутренние пептидые связи. К эндопептидазам относятся наиболее важные для желудочного пищеварения протеолитические ферменты пепсин, гастриксин и химозин, а также вырабатываемые в виде проферментов поджелудочной железой и участвующие в кишечном пищеварении трипсин, химотрипсин и эластаза. Экзопептидазами являются протеолитические ферменты карбоксипептидаза А и карбоксипептидаза В, также присутствующие в панкреатическом соке. К экзопептидазам относятся ферменты кишечного сока: аминопептидазы (аланин-аминопептидаза и лейцин-аминопептидаза) и дипептидазы (глицилглицин-дипептидаза, глициллейцин-дипептидаза, пролиназа и пролидаза).
Протеазы разделяют на шесть групп, в зависимости от строению активного центра:

ü сериновые; в активном центре этих протеаз присутствует серин; сериновые протеазы — трипсин, химотрипсин и эластаза составляют 44% от общего количества белка экзокринной части поджелудочной железы

ü треониновые

ü цистеиновые

ü аспартильные — желудочные протеазы пепсин, гастриксин, катапепсины Д и Е и другие

ü металлопротеазы — например, карбоксипептидазы А и В являются Zn-металлопротеазами

ü глютаминовые

36) Общая характеристика витаминов. Классификация. Биологическая роль.

Учение о витаминах – витаминология – в настоящее время выделено в самостоятельную науку.

Витамины – пищевые факторы, которые, присутствуя в небольших количествах в пище, обеспечивают нормальное протекание биохим.и физиологич.процессов путем участия в регуляции обмена целостного организма. Нарушения нормального процесса обмена часто связаны с недостаточным поступлением витаминов в организм, полным отсутствием их в потребляемой пище или нарушениями их всасывания, транспорта и т.д. В результате развиваются авитаминозы – болезни, возникающие на почве полного отсутствия в пище или полного нарушения усвоения какого-либо витамина, и, гиповитаминозы, обусловленные недостаточным поступлением витаминов с пищей или плохим их усвоением.

Открытие витаминов сыграло исключит.роль в профилактике и лечении многих инфекц.заболеваний.

Классификация витаминов. Современная классификация вит-ов основана на физико-хим.св-вах, химической природе и имеет буквенные обозначения. В зависимости от растворимости различают жирорастворимые и водорастворимые вит.

Витамины, растворимые в жирах:

1. Витамин А (антисерофтальмический); ретинол

2. Витамин D (антирахитический); кальциферолы

3. Витамин Е (антистерильный, витамин размножения); токоферолы

4. Витамин К (антигеморрагический); нафтохиноны

Витамины, расворимые в воде:

1. Витамин В1 (антиневритный); тиамин

2. Витамин В2 (витамин роста); рибофлавин

3. Витамин В6 (антидерматитный, адермин); пиридоксин

4. Витамин В12 (антианемический); кобаламин

5. Витамин РР (антипеллагрический); ниацин, никотинамид

6. Витамин Вс (антианемический); фолиевая кислота

7. Витамин В3 (антидерматитный); пантотеновая кислота

8. Витамин Н (антисеборейный, фактор роста бактерий, дрожжей и грибов); биотин

9. Витамин С (антискорбутный); аскорбиновая кислота

10. Витамин Р (капилляроукрепляющий, витамин проницаемости); биофлавоноиды.

Витамины нашему организму необходимы, практически, как воздух – полное их отсутствие неизбежно приведет к гибели организма. Основная роль витаминов - *запуск* усвоения пит.в-в, восстановления клеток и тканей, вывода шлаков и токсинов.

 

37) Коферменты

(коэнзимы), орг. прир. соед., необход для осущ-ния каталитич. действия ф-тов. Эти в-ва, в отличие от белкового компонента ф-та (апоф-та), имеют сравнительно небольшую мол.массу и термостабильны. Иногда под коф-тами подразумевают любые низкомол. в-ва, участие к-рых необходимо для проявления каталитич. действия ф-та, в т. ч. и ионы, напр. К+, Mg2+ и Мn2+. Располаг коф-ты в активном центре ф-та и вместе с субстратом и функц. группой активного центра обр-ют активир. комплекс. Коф-ты должны обладать по крайней мере 2 функц-ми участками или группировками, ответств за специфич. связывание с апоф-том и субстратом. Часто коф-ты прочно связаны с апоф-том - обр-ют с ним трудно диссоциирующие или недис-щие комплексы либо соединены с полипептидной цепью ковалентной связью (такие коф-ты наз. простетич. гр). В этом случае коф-ты обычно ост-ся в составе ф-та на всех стадиях каталитич. р-ции. Примеры таких коф-тов - флавиновые коф-ты и пиридоксаль-5'-фосфат. Легко диссоц-щие коф-ты-обычно коф-ты- переносчики, действие к-рых связано с переходом от одной мол-лыф-та к другой. Различают 2 гр коф-тов. Относящиеся к первой группе коф-ты участвуют в р-циях, в к-рых превращ. субстрата катализируется одним ф-том. При этом коф-т может регенерироваться после каждого каталитич. акта в составе ф-та, кат-ющего превращ. субстрата. Коф-ты второй гр уч-ют в активации и переносемол-лсубстрата от одного ф-та к др. В этом случае первоначально субстрат реагирует с коф-том в актив центре ф-та с обр-нием достаточно устойчивого соед., к-рое может в неизменном виде переноситься в клетке к др. ф-ту, в актив центре к-рого осущ-ются каталитич. превращ. субстрата и одноврем. регенерация коф-та. Обр-ние комплекса апоф-та с коф-том - один из способов регуляции активности ф-та в орг-ме.

Роль коферментов нередко играют витамины или их метаболиты (чаще всего — фосфорилированные формы витаминов группы B). Например, коферментом фермента карбоксилазы является тиаминпирофосфат, коферментом многих аминотрансфераз — пиридоксаль-6-фосфат.

В металлоферментах роль, аналогичную роли коферментов, могут исполнять катионы металлов, однако коферментами их обычно не называют.

Коферменты, являющиеся производными витаминов:

Пиридоксаль-5'-фосфат (VI) коферментная форма витамина В6.

Тиаминдифосфат (тиаминпирофосфат, кокарбоксилаза, ТДФ; VII) - коферментная форма витамина тиамина.

Тетрагидрофолиевая кислота (FH4; V) - коферментная форма витамина фолацина.

Никотинамидные коферменты - коферментная форма витамина ниацина.

Флавиновые коферменты-коферментная форма витамина рибофлавина.

 

38) Оксидоредукта́зы — отдельный класс ферментов, катализирующих лежащие в основе биологического окисления реакции, сопровождающиеся переносом электронов с одной молекулы (восстановителя — акцептора протонов или донора электронов) на другую (окислитель — донора протонов или акцептора электронов).

Катализируемые реакции

Реакции, катализируемые оксидоредуктазами, в общем виде выглядят так:

A + B → A + B

Где A — восстановитель (донор электронов), а B — окислитель (акцептор электронов)

В биохимических превращениях окислительно-восстановительные реакции иногда выглядят сложнее. Вот, например, одна из реакций гликолиза:

Pн + глицеральдегид-3-фосфат + НАД+ → НАД · H + H+ + 1,3-дифосфоглицерат

Здесь в качестве окислителя выступает НАД+, а глицеральдегид-3-фосфат является восстановителем.

Номенклатура

Систематические названия ферментов класса образуются по схеме «донор:акцептор + оксидоредуктаза». Однако широко используются и другие схемы именования. Когда возможно, ферменты называют в виде «донор + дегидрогеназа», например глицеральдегид-3-фосфатдегидрогеназа, для второй реакции выше. Иногда название записывается как «акцептор + редуктаза», например НАД+-редуктаза. В частном случае, когда окислителем является кислород, название может быть в виде «донор + оксидаза».

 

39) Вит- В6 (пиридоксин) явл производным 3-оксипиридина, в частности 2-метил-3-окси-4,5-диоксиме-тилпиридином.Три производных 3-оксипиридина, обладающих одинаковой вит-ной активностью: пиридоксин (пиридоксол), пиридоксаль и пиридоксамин:

Биологическая роль. Оказалось, что, хотя все три производных 3-окси-пиридина наделены вит-ными св-вами, коф-тные функции выполняют только фосфорилированные производные пиридоксаля и пиридоксамина.

Фосфорилирование пиридоксаля и пиридоксамина явл ф-тативной р-цией, протекающей при участии специфических киназ. Синтез пиридоксальфосфата, например, катализирует пиридоксалькиназа, к-рая наиболее активна в ткани мозга.

Доказано, что в животных тканях происходят взаимопревращения пиридоксальфосфата и пиридоксаминфосфата, в частности в р-цияхтрансаминирования и декарбоксилирования АМК.

Известно более 20 пиридоксалевых ф-тов, кат-ющих ключевые р-ции азотистого метаболизма во всех живых орг-мах. Вследствие широкого участия пиридоксальфосфата в процессах обмена при недостаточности вит-а В6 отмечаются разнообразные нарушения метаболизма АМК.

ПЕРЕАМИНИРОВАНИЕ(трансаминирование)

Это обратимый перенос аминогруппы из мол-лы одного орг. соед. в мол-лу другого. Наиб.роль переаминирование играет в биохимии в процессах метаболизмаазотистых оснований в тканях животных и растений.

В жив орг-мах на р-циях такого типа основ-тся синтез и диссимиляцияАМК.

Аминотрансферазы содержат в качестве кофсрмента производные вит-а В6-пири-доксаль-5'-фосфат (ф-ла I) и пиридоксамин-5'-фосфат (II). В основе каталитич. активности пиридоксаль-5'-фосфата лежит способность его формильной группы образовывать с АМКамишиффовы основания, легко гидролизующиеся до пиридоксамин-5'-фосфата и -кеток-ты.

Нарушение нормального течения переаминирования в орг-ме наблюдается при патологич. состояниях, напр. при инфаркте миокарда, заболеваниях печени. Переаминирование в орг-ме подавляется противотуберкулезными лек.ср-вами (изониазидом, циклосерином и др.), а также при В6-авит-озе.Общая схема переаминирования:

 

Переаминирование АМК может происходить и вне клетки в присут. пиридоксаль-5'-фосфата, однако скорость р-ции в 106 раз меньше. К переаминированию относят также превращ. -кеток-ты в -амино-к-ту при нагр. с др. АМКой в водном р-ре (р-ция Хербста - Энгеля):

40) Биоти́н (витамин Н, витамин B7, кофермент R) — водорастворимый витамин группы В. Молекула биотина состоит из тетрагидроимидазольного и тетрагидротиофенового кольца, в тетрагидротиофеновом кольце один из атомов водорода замещен на валериановую кислоту. Биотин является кофактором в метаболизме жирных кислот, лейцина и в процессе глюконеогенеза.

Входит в состав ферментов, регулирующих белковый и жировой обмен, обладает высокой активностью. Участвует в синтезе глюкокиназы — фермента, регулирующего обмен сахаров.

Является коферментом различных ферментов, в том числе и транскарбоксилаз. Участвует в синтезе пуриновых нуклеотидов. Является источником серы, которая принимает участие в синтезе коллагена. С участием биотина протекают реакции активирования и переноса СО2.

Авитаминозы

Причины

  • наследственность;
  • применение антибиотиков и сульфаниламидных препаратов угнетает здоровую микрофлору кишечника, синтезирующую биотин;
  • злоупотребление диетами, которые ограничивают нормальное питание;
  • нарушения пищеварения, обусловленные атрофией слизистой оболочки желудка и тонкого кишечника (синдром мальабсорбции после резекции тонкого кишечника);
  • регулярное употребление сахарина, который негативно влияет на усвоение и метаболизм биотина, а также угнетает микрофлору кишечника, синтезирующую биотин;
  • употребление сырых яиц, белок которых содержит гликопротеид авидин, взаимодействующий с биотином;
  • употребление продуктов, содержащих сернистые соединения в качестве консервантов (E221 — E228) (сернистый ангидрид, образующийся при нагревании таких продуктов, а также при контакте их с воздухом, разрушает биотин);
  • злоупотребление алкоголем (алкогольные напитки мешают нормальному усвоению биотина).

Проявления

При недостатке биотина наблюдаются:

  • поражения кожи рук и ног
  • сухость и нездоровый оттенок кожи
  • бледный гладкий язык
  • сонливость, депрессия
  • болезненность и слабость мышц
  • гипотония
  • высокий уровень холестерина и сахара в крови
  • анемия
  • потеря аппетита и тошнота
  • ухудшение состояния волос
  • замедляется рост.

Биотин в живом организме концентрируется в печени, почках.

 

41) Аскорби́новая кислота́ — органическое соединение, родственное глюкозе, является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани. Выполняет биологические функции восстановителя и кофермента некоторых метаболических процессов, является антиоксидантом. Биологически активен только один из изомеров — L- аскорбиновая кислота, который называют витамином C. В природе аскорбиновая кислота содержится во многих фруктах и овощах.

По физическим свойствам аскорбиновая кислота представляет собой белый кристаллический порошок кислого вкуса. Легко растворим в воде, растворим в спирте.

Из-за наличия двух асимметрических атомов существуют четыре диастереомера аскорбиновой кислоты. Две условно именуемые L- и D- формы хиральны относительно атома углерода в фурановом кольце, а изо- форма является D- изомером по атому углерода в боковой этиловой цепи.

L- изоаскорбиновая, или эриторбовая, кислота используется в качестве пищевой добавки E315.

Синтетически получают из глюкозы.

Синтезируется растениями из различных гексоз (глюкозы, галактозы)] и большинством животных (из галактозы), за исключением приматов и некоторых других животных (например, морских свинок), которые получают её с пищей.

Биологическая роль

Образование коллагена, серотонина из триптофана, образование катехоламинов, синтез кортикостероидов. Аскорбиновая кислота также участвует в превращении холестерина в желчные кислоты.

Витамин С необходим для детоксикации в гепатоцитах при участии цитохрома P450. Витамин С сам нейтрализует супероксид-анион радикал до перекиси водорода.

Восстанавливает убихинон и витамин Е. Стимулирует синтез интерферона, следовательно, участвует в иммуномодулировании. Переводит трёхвалентное железо в двухвалентное, тем самым способствует его всасыванию.

Тормозит гликозилирование гемоглобина, тормозит превращение глюкозы в сорбит.

 

42) Коферменты ФМН и ФАД

Флавиновые коферменты ФМН и ФАД найдены в дегидрогеназах, оксидазах и монооксигеназах. Обычно оба соединения ковалентно связаны с ферментами. Активной группой обоих коферментов является флавин, имеющий сопряженную систему из трех колец, которая может при восстановлении принимать два электрона и два протона. В ФМН к флавину присоединен фосфорилированный полиол рибит. ФАД состоит из ФМН, связанного с АМФ. Восстановление флавиновых коф-тов осуществляется через ряд промежут. стадий, включающих обр-ние радикалов.
Главная ф-ция флавиновых коф-тов - перенос электронов (водорода) в окислит.-восстановит. цепи от НАДН и янтарной к-ты к цитохромам. Флавопротеиды катализируют также многочисл. р-ции, механизм к-рых включает стадию одноэлектронного переноса; окисление восстановл. формы амида липоевой к-ты, синтез кобамидного коф-та из АТФ и вит-а В12, окислениеглюкозы и др.

 

43) Важнейшие коферменты НАД и НАДФ.

Никотинамидные коферменты - коферментная форма витамина ниацина. К этой группе коферментов, универсальных по распространению и биол. роли, относятся НАД и НАДФ, а также восстановленные (по пиридиновому кольцу) формы этих соед. (соотв. НАДН и НАДФН); наиб.важная биохим. функция этих коферментов - их участие в переносе электронов и водорода от окисляющихся субстратов к кислороду в клеточном дыхании. При участии НАД или НАДФ, связанных прочно или легко диссоциирующих, ферменты дегидрогеназы катализируют обратимое превращ. спиртов, гидроксикислот и нек-рых аминокислот в соответствующие альдегиды, кетоны или кетокислоты.

 

44) коА

КоА, кофермент ацетилирования (или ацилирования), важнейший из коферментов, принимающий участие в реакциях переноса ацильных групп.

С КоА связан обширный круг биохимических реакций, лежащих в основе окисления и синтеза жирных кислот, биосинтеза липидов, окислительных превращений продуктов распада углеводов и т. д. Во всех случаях КоА действует как промежуточное соединение, связывающее (акцептирующее) и переносящее кислотные остатки на др. вещества. При этом кислотные остатки либо подвергаются в составе соединения с КоА тем или иным превращениям, либо передаются без изменений на определённые метаболиты. «Активную» форму органических кислот представляют ацильные остатки, присоединённые к сульфгидрильной (SH) группе КоА макроэргической ацилтиоэфирной связью. Пантотеноваяк-та в виде КоА участвует в УГном и жировом обмене, в синтезе ацетилхолина, в коре надпочечников стимулирует обр-ние кортикостероидов.

Карбоксилазныереакции:

CH3–CO–S-KoA + CO2 + АТФ<=> HOOC–CH2–CO–KoA + АДФ

метилмалонил-оксалоацетат-транскарбоксилазная реакция, катализ.обратимое превраще-ние пировиноградной и щавелевоуксусной кислот:

Метилмалонил-КоА Пируват Пропионил-КоА Оксалоацетат

В организме человека изуказанных процессов открыта только реакция изомеризации метилмалонил-КоА в сукцинил-КоА.






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных