ТОР 5 статей: Методические подходы к анализу финансового состояния предприятия Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века Характеристика шлифовальных кругов и ее маркировка Служебные части речи. Предлог. Союз. Частицы КАТЕГОРИИ:
|
Алгоритмы растровой графикиРастром называется прямоугольная сетка точек, формирующих изображение на экране компьютера. Каждая точка растра характеризуется двумя параметрами: своим положением на экране и своим цветом, если монитор цветной, или степенью яркости, если монитор черно-белый. Поскольку растровые изображения состоят из множества дискретных точек, то для работы с ними необходимы специальные алгоритмы. Рисование отрезка прямой линии - одна из простейших задач растровой графики. Смысл ее заключается в вычислении координат пикселов, находящихся вблизи непрерывных отрезков, лежащих на двумерной растровой сетке. Рис. 28. Растеризация отрезка прямой линии.
Термин “пиксел” образован от английского pixel (picture element - элемент изображения) - то есть точка на экране. Будем считать, что пикселы имеют целочисленные координаты. На первый взгляд кажется, что эта задача имеет простое решение. Пусть конечные точки отрезка имеют целочисленные координаты, и уравнение прямой, содержащей отрезок: . Не нарушая общности, будем также считать, что тангенс угла наклона прямой лежит в пределах от 0 до 1. Тогда для изображения отрезка на растре достаточно для всех целых , принадлежащих отрезку, выводить на экран точки с координатами . Однако в этом методе присутствует операция умножения . Хотелось бы иметь алгоритм без частого использования операции умножения вещественных чисел. Избавиться от операции умножения можно следующим образом. Поскольку , то один шаг по целочисленной сетке на оси будет соответствовать . Отсюда получаем, что будет увеличиваться на величину . Итерационная последовательность выглядит следующим образом: , Когда , то шаг по будет приводить к шагу по , поэтому и следует поменять ролями, придавая единичное приращение, а будет увеличиваться на единиц. Этот алгоритм все же не свободен от операций с вещественными числами. Наиболее изящное решение задачи растровой развертки отрезков прямых было найдено Брезенхемом. В его алгоритме вообще не используются операции с вещественными числами, в том числе операции умножения и деления. Для вывода формул алгоритма Брезенхема рассмотрим рис. 29. Рис. 29. Рисование отрезков прямых по методу Брезенхема.
Пусть начало отрезка имеет координаты , а конец . Обозначим , . Не нарушая общности, будем считать, что начало отрезка совпадает с началом координат, и прямая имеет вид , где . Считаем что начальная точка находится слева. Пусть на -м шаге текущей точкой отрезка является . Выбор следующей точки или зависит от знака разности . Если , то и тогда , , если же , то и тогда , . , ,
. Поскольку знак совпадает со знаком разности , то будем проверять знак выражения . Так как и , то . Пусть на предыдущем шаге , тогда и . Если же на предыдущем шаге , то и . Осталось узнать как вычислить . Так как при : , . Далее приводится листинг процедуры на языке Паскаль, реализующей алгоритм Брезенхема.
Procedure Bresenham(x1,y1,x2,y2,Color: integer); var dx,dy,incr1,incr2,d,x,y,xend: integer; begin dx:= ABS(x2-x1); dy:= Abs(y2-y1); d:=2*dy-dx; {начальное значение для d} incr1:=2*dy; {приращение для d<0} incr2:=2*(dy-dx); {приращение для d>=0} if x1>x2 then {начинаем с точки с меньшим знач. x} begin x:=x2; y:=y2; xend:=x1; end else begin x:=x1; y:=y1; xend:=x2; end; PutPixel(x,y,Color); {первая точка отрезка} While x<xend do begin x:=x+1; if d<0 then d:=d+incr1 {выбираем нижнюю точку} else begin y:=y+1; d:=d+incr2; {выбираем верхнюю точку, y-возрастает} end; PutPixel(x,y,Color); end;{while} end;{procedure}
Перед тем, как исследовать методы получения изображений более сложных, чем отрезки прямых, рассмотрим проблему, незримо присутствующую в большинстве задач компьютерной графики. Эта проблема отсечения изображения по некоторой границе, например, по границе экрана, или, в общем случае, некоторого прямоугольного окна. Рассмотрим эту задачу применительно к отрезкам прямых. Некоторые из них полностью лежат внутри области экрана, другие целиком вне ее, а некоторые пересекают границу экрана. Правильное отображение отрезков означает нахождение точек пересечения их с границей экрана и рисование только тех их частей, которые попадают на экран. Один из очевидных способов отсечения отрезков состоит в определении точек пересечения прямой, содержащей отрезок, с каждой из четырех прямых, на которых лежат границы окна и проверки не лежит ли хотя бы одна точка пересечения на границе. В этом случае для каждой пары сторона-отрезок необходимо решать систему из двух уравнений, используя операции умножения и деления. При этом удобно параметрическое задание прямых:
. Для эти уравнения определяют точки, находящиеся между и . Специальной проверки требует случай, когда отрезок параллелен стороне окна. Пусть координата x точки пересечения найдена, тогда
Не нашли, что искали? Воспользуйтесь поиском:
|