Главная

Популярная публикация

Научная публикация

Случайная публикация

Обратная связь

ТОР 5 статей:

Методические подходы к анализу финансового состояния предприятия

Проблема периодизации русской литературы ХХ века. Краткая характеристика второй половины ХХ века

Ценовые и неценовые факторы

Характеристика шлифовальных кругов и ее маркировка

Служебные части речи. Предлог. Союз. Частицы

КАТЕГОРИИ:






ВАЛЕНТНОСТИ ПЕРВОГО ПОРЯДКА 4 страница




Первостепенное требование для замен один к одному таково: валентность заменителя должна соответствовать валентности водорода, как по величине, так и по знаку. Этим требованием пренебрегают современные структурные теории, не осознающие существования положительной и отрицательной валентности в органических соединениях. У этих соединений одни атомы водорода положительные, другие отрицательные, и это определяет, какие замены могут иметь место. Водород в комбинации с углеродом отрицательный и может заменяться любыми галогенами или отрицательными радикалами. Водород в комбинации с кислородом положительный и, следовательно, может заменяться только положительными элементами и радикалами. Поэтому из уксусной кислоты CH3 • CO • OH посредством замены CH2Cl • CO • OH мы получаем хлорацетиловую кислоту, а не CH3 • CO • ONa, или ацетат натрия Na • (O • CO • CH3).

Действуя в одиночку, атом водорода может быть либо положительным, либо отрицательным в зависимости от внешнего окружения. На конце углеводородной цепи атом водорода отрицателен и может заменяться галогеном. Этан CH3 • CH2 • H становится этил хлоридом CH3 • CH2 • Cl. При формировании кислоты H • CO • OH атом водорода положителен и не может замещаться галогеном. Щелочные элементы нормальной валентности тоже не могут заменить одновалентный, магнитный атом водорода, и входящий положительный атом отходит к радикалу ОН. В комбинациях N-H водород тоже устойчив к одноатомным замещениям, но легко поддается замещению радикалами подходящей валентности.

В положительных и отрицательных радикалах элементы с более высокими валентностями довольно свободно замещаются либо углеродом, либо водородом, но входят в магнитные, нейтральные группы в основном как составляющие общих одновалентных радикалов - OH, NH2 и так далее. За исключением прямой комбинации углерод-кислород - СО, обязательным компонентом расширенного радикала, такого как (O • CH2 • CH3), является единичный двух или трехвалентный атом в нейтральной группе.

Начиная обсуждение главных семейств замещенных соединений, мы будем рассматривать спирты. Классификация спиртов основывается на результатах разных способов прибавления кислорода к углеводородам. Радикал ОН непосредственно примыкает к углеводородной группе, заменяя отрицательный атом водорода. Однако то, что группа ОН заменяет определенный атом, представляющий отрицательный компонент соединения в целом, не существенно. Химическое поведение обычных спиртов, у которых радикал ОН находится на конце цепи, как в этиловом спирте CH3 • CH2 • OH, почти такое же, как если ОН заменяется атомом водорода в одной из нейтральных групп, как у вторичного бутилового спирта CH3 • CH2 • CHOH • CH3. Если замещение имеет место в положительном радикале, результат немного другой. Такое замещение намного вероятнее, если сначала кислород помещается на более благоприятный отрицательный конец соединения. Продуктом двойного замещения ОН является двухосновной спирт или гликоль. Самое известное соединение – этилен гликоль, CH2OH • CH2 • OH.

Ранее в этой главе отмечалось, что на самом деле парафиновые углеводороды не являются такими симметричными структурами, какими кажутся. На каждом конце молекулы имеется комбинация одного атома углерода и трех атомов водорода, но один конец цепи обязательно положительный. Это значит, что на этом конце цепи группа CH3 является радикалом, у которого углерод обладает валентностью +4, а другой конец цепи обязательно отрицательный. Как уже объяснялось, это значит: группа CH3 в этом положении является закрытой связью отрицательного атома водорода с нейтральной группой CH2, у которой углерод обладает валентностью +2. Если важна истинная молекулярная структура, скажем для понимания химического поведения этилена, существенно осознать, что CH3 в нейтральном положении, на самом деле, представляет собой CH2 • H. Как указывалось в формуле, приведенной для этилен гликоля, та же асимметрия присутствует и в других соединениях, кажущихся симметричными. В положительном положении в гликолях группа CH2OH обладает углеродом с валентностью +4 и валентностью группы в целом +1. В отрицательном положении валентность углерода +2, а истинная структура выглядит как CH2 • OH. Учебники по химии содержат такие утверждение, как: “Теоретически, самым простым гликолем должен быть дигидрокси метан, CH2(OH)2“. Объяснение структуры гликоля показывает, почему это соединение не было бы гликолем, и почему оно не обнаружено.

Прибавленный к углеводороду атом кислорода может заменяться двумя атомами водорода нейтральной группы CH2, а не образовывать радикал ОН. Получившаяся группа СО почти не может действовать как магнитная, нейтральная группа, поскольку сильно ограничена своим положением в молекуле. Прямые цепи групп СО, похожие на цепи CH2, не возможны. Это объясняет, почему окись углерода существует как отдельное соединение, а метилен нет. Чтобы группа СО могла присоединяться к органической комбинации, требуется помощь со стороны геометрической компоновки (положение, которое будет обсуждаться позже в связи с исследованием кольцевых соединений). У цепных соединений это легче осуществить на отрицательном конце молекулы. Следовательно, при обычной компоновке единичная, нейтральная группа СО присоединяется непосредственно к отрицательному атому или радикалу.

Если отрицательный компонент является радикалом ОН, получившееся соединение содержит комбинацию CO • OH и является кислотой. Уксусная кислота CH3 • CO • OH и акриловая кислота CH • CH2 • CO • OH - представители соответственно парафиновых и олефиновых (ненасыщенных) кислот. И вновь, сдвиг валентности углерода до +4 создает положительный радикал того же состава и позволяет образование двухосновных кислот, таких как щавелевая кислота COOH • CO • OH, малеиновая кислота COOH • CH • CH • CO • OH, и так далее.

Модификация структуры кислоты посредством замещения алкиловой группы на гидроокись водорода приводит к другому семейству соединений – эфирам. Типичными представителями моно и ди эфиров являются соответственно этил ацетат CH3 • CO • (O • CH2 • CH3) и диэтил оксалат CO(O • CH2 • CH3) • CO • (O • CH2 • CH3). Подобное замещение у спирта создает эфир. Эфир можно рассматривать как радикал состава O • (CH2)n • CH3 в комбинации с группой алкила. Если сейчас мы заменим второй такой же радикал на один из атомов водорода в соседней углеводородной группе, то получим ацеталь. Еще одна подобная замена даст ортоэфир. Например, последующими замещениями в этиловом спирте CH3 • CH2 • OH мы получаем метил этил эфир CH3 • CH2 • (O • CH3), диметил ацетил CH3 • CH • (O • CH3)2 и триметил ортоацетат CH3 • C • (O • CH3)3. Удаление молекулы воды из двух молекул кислоты создает ангидрид, например, уксусный ангидрид (CH3 • CO)2 • O. В эти соединения не включаются никакие новые структурные характеристики.

Если нейтральная группа СО присоединяется непосредственно к отрицательному атому водорода на конце углеводородной цепи, получается соединение альдегид. Самый известный член этого семейства - ацетальдегид CH3 • CO • H. Альдегидный радикал обычно выражается как СНО (как говорят учебники, чтобы не путать с радикалом ОН), но это не отражает истинного статуса комбинации СО как нейтральной группы. Ничего не стоит заметить, что представление СНО не объясняет (как это делает формула CO • H), почему одна из самых важных характеристик альдегидов - они хорошие восстановители. Подобно другим обсужденным органическим семействам альдегиды формируют двухосновные и одноосновные соединения. Самым простым двухосновным альдегидом является глиоксал COH • CO • H. Как и в таких структурах как COOH • CO • OH, преобразование отрицательного радикала в положительный включает сдвиг валентности. Но у кислот изменению подвергается валентность углерода, от +2 в CO • OH до +4 в СООН, а у альдегидов - валентность водорода, от -1 в CO • H до +1 в СОН.

Это самые основные изменения валентности в органических реакциях, и их побочные влияния являются существенным элементом в широком разнообразии химических реакций. Например, в дополнительных реакциях, переводящих олефиновые соединения в статус парафинов (например, дополнение HBr до акриловой кислоты), валентность углерода в положительном радикале увеличивается на две единицы: от +2 до +4. Одновременно атом водорода, обладавший валентностью +1 у HBr, уменьшает свою валентность на две единицы до уровня –1 в конечном продукте CH2Br • CH2 • CO • OH. Способу изменения валентности нет преград. Это просто вопрос переориентации - изменение направления вращения; и каждый атом свободен переориентироваться так, чтобы соответствовать своему окружению. Но у соединения должно сохраняться равновесие “положительный - отрицательный”. Изменение от положительного к отрицательному и наоборот у атома водорода является одним из самых известных способов компенсации увеличения или уменьшения валентности углерода.

У углеводородов из-за тесной связи между отрицательным атомом водорода и соседней группой CH2 нейтральная группа СО может занимать положение рядом с комбинацией CH2 • H как альтернатива положению альдегида рядом с атомом водорода. В этом более удаленном положении она находится поблизости от предела стабильности, и это делает связь с положительным радикалом вероятнее, чем участие в отрицательной комбинации CO • CH2 • H. По этой причине одноосновные соединения этого семейства – кетоны - имеют кислород в положительном радикале COCH3, а не в отрицательном радикале как обычно. Первый член семейства - диметил кетон или ацетон - обладает структурой COCH3 • CH2 • H. Соответствующее двухосновное соединение – диметил дикетон COCH3 • CO • CH2 • H.

Одноосновную кетоновую структуру можно выверить с помощью сравнения результатов простых реакций прибавления кетонов к альдегидам, изометрических соединений, в которых группа СО нейтральна. Прибавление водорода к альдегидам продолжается следующим образом:

CH3 • CH2 • CO • H + H2 = CH3 • CH2 • CH2 • OH

Конечный продукт - пропиловый спирт, - это обычное цепное соединение с радикалом CH3 в положительном положении, как и в самом альдегиде. Изменен лишь отрицательный конец молекулы. Если бы группа СО в соответствующем кетоне (метил этил кетоне или 2-бутаноне) обладала тем же статусом, что и в альдегиде (то есть, если соединение было бы CH3 • CH2 • CO • CH3), следовало ожидать того же результата. Мы бы ожидали, что положительный радикал CH3 останется пассивным, а первичным или, возможно, вторичным продуктом будет спирт. Но поскольку группа СО у кетона является частью радикала, у которого валентность углерода равна 4, а соединение, на самом деле, представляет собой COCH3 • CH2 • CH3, обе группы CH3 отрицательные. Прибавление атома водорода к нейтральной группе CH2 создает третью отрицательную группу CH3. Ввиду отсутствия положительного радикала СН, гидрогенизация выливается в третичный спирт, в котором группы CH3 отрицательные, как и в исходном кетоне:

 

COCH3•CH2•CH3 + H2 = C(CH3)3•OH

 

У обсужденных цепных органических соединений удлинение цепи достигается в основном за счет прибавления нейтральных групп CH2, и в некоторых случаях пар CH • CH. Введение кислорода создает нейтральную группу СНОН, и замещение CH2 на эту группу создает дополнительные семейства соединений. Они включают такие важные вещества как оксикислоты, полиоксиспирты и сахариды. Оксикислоты могут быть либо одноосновными, как молочные кислоты CH3 • CHOH • CO • OH, либо двуосновными, как виннокаменная кислота COOH • (CHOH)2 • CO • OH. В обоих случаях цепи можно расширить прибавлением большего числа групп СНОН, хотя возможно и прибавление CH2, как в яблочной кислоте COOH • CHOH • CH2 • CO • OH. Полиоксиспирты - это расширения гликолевой цепи нейтральными группами СНОН. Общая формула - CH2OH • (CHOH)n• CH2 • OH. Сахариды появляются в результате преобразования радикалов CH3 (в альдегидах и кетонах) в CH2OH и прибавления нейтральных групп СНОН. Продукты, полученные из альдегидов, - альдозы, общая формула которых CH2OH • (CHOH)n • CO • H. Продукты, полученные из кетонов, - кетозы, их структура (CO • CH2 • OH) • (CHOH)n • CH2 • OH.

Если в альдегид или кетон вводится азот, заменяя комбинацию углерод-кислород на тройную комбинацию азота, водорода и кислорода в форме двухвалентного оксирадикала NH • O, природа дополнительных продуктов демонстрирует то же отношение к структурам двух оксопроизводных, какое мы замечали в случае прибавления водорода. Прибавление NH к альдегиду изменяет только отрицательный радикал, который расширяется от CO • H до CH • NH • O. Например, пропион альдегид CH3 • CH2 • CO • H становится окси пропион альдегидом CH3 • CH2 • (CH • NH • O). С другой стороны, прибавление NH к кетонам требует молекулярного перегруппирования для введения отрицательных групп CH3 в комбинацию с положительным углеродом в положительном радикале. Прибавление NH к ацетону COCH3 • CH3 создает диметил кетоксим C(CH3)2 • NH • O. Как указывается в этих формулах, чтобы показать истинный состав, необходимо изменить выражение для оксирадикала с традиционного NOH на NH • O.

Другой способ введения азота в углеводороды – замена отрицательного водорода на аминогруппы NH2. Тогда дальнейшие, возможные замещения на положительные атомы водорода в NH2 создают огромное разнообразие структур. Соединения, у которых радикал NH2 остается бездействующим, - это первичные амины; соединения с NH и одним положительным замещением – это вторичные амины, а соединения, у которых заменены оба атома водорода, оставляя от изначальной аминогруппы только один атом азота, - третичные амины. Поскольку замещения амина положительные, эти соединения могут иметь больше одной олефиновой ветви, как у диалиламине (CH • CH2 • CH2)2 • NH, - виде структуры, не обнаруженной у углеводородов, у которых все атомы водорода отрицательные и могут заменяться только отрицательными заменителями. Диамины обладают обычной двойной структурой с CH2NH2 в положительном положении и обычной комбинации амина CH2 • NH2 на отрицательном конце молекулы.

Подобно гидроксильной группе ОН, присоединяющейся к СН для формирования нейтральной группы СНОН, аминная группа объединяется с СН для образования нейтральной группы CHNH2. Из-за положения в цепях эта группа более ограничена, чем СНОН, которая легко заменяется на CH2. Но она очень важна как существенный компонент аминокислот, которые, в свою очередь, являются основными строительными блоками белков – базовыми составляющими живой материи. У монокислот действующая группа CHNH2 расширяет кислотный радикал с CO • OH до CHNH2 • CO • OH. Дальнейшее удлинение цепи происходит за счет прибавления углеводородных, нейтральных групп или CНОН, а не CHNH2. Так даланин CH3 • CHNH2 • CO • OH удлиняется до 1-лейцина CH3 • CHCH3 • CH2 • CHNH2 • CO • OH.

Эти два соединения являются членами одной подгруппы аминокислот, в которой положительным радикалом является CH3. Вторая подгруппа использует радикал карбоксила СООН в положительном положении. Самое простое соединение этого типа – д-аспарагиновая кислота COOH • CH2 • CHNH2 • CO • OH. Третья подгруппа - д-аминосиклоты - имеет радикалы амина как в положительном, так и в отрицательном положениях., как в д-лизине CH2NH2 • (CH2)3 • CHNH2 • CO • OH.

Еще одна комбинация, содержащая азот, - радикал цианид или нитрил. У обычного радикала CN азот имеет валентность (-3), а углерод – первичную магнитную валентность 2; результирующая валентность группы (-1). У радикала NC2, у которого азот имеет усиленную нейтральную валентность 3, положительные и отрицательные роли переворачиваются. При такой ориентации азот обладает свойствами элементов Деления III и положителен к углероду, а не отрицателен как обычно. Поскольку отрицательная валентность углерода равна 4, результирующая валентность радикала NC составляет (–1), идентично валентности CN. Поэтому соединения CN – изоцианиды - обладают тем же составом, что и цианиды, но разными свойствами.

В таких соединениях радикал СН+ появляется как цианоуксусная кислота CN • CH2 • CO • OH. Здесь азот отрицательный, как и в радикале CN•, а углерод обладает обычной положительной валентностью 4; поэтому результирующая валентность группы +1. Цианоген CN • CN, - это комбинация радикалов +1 и –1. Соединения с комбинацией CO • CN в отрицательном положении обычно не рассматриваются как отдельное семейство и именуются как обычные цианиды.

Приведение нейтральной группы СО в соединение с NH2 создает амид - структуру открытую необычайно широкому разнообразию прибавлений и замещений. Начиная с ацетамида (амида уксусной кислоты) CH3 • CO • NH2, можно обычным способом прибавлять группы CH2 для образования пропионамида CH3 • CH2 • CO • NH2 и более высоких гомологов. Или можно заменять положительные радикалы амино водородом и получать такие соединения как N-этил ацетамин CH3 • CO • (NH • CH2 • CH3). Комбинация NH, обладающая результирующей валентностью (–2), может занимать место кислорода в амидной группе CO, образуя нейтральную группу CNH, обладающую похожими свойствами. Такое замещение в ацетамиде дает ацетамидин CH3 • CNH • NH2. Если нейтральная группа СО в ацетамиде заменяется положительным радикалом СО, мы получаем аминоацетон COCH3 • CH2 • NH2. Дальнейшее замещение углерода азотом изменяет радикал COCH3 на CONH2 и создает абсолютно новые серии - мочевину CONH2 • NH2 и ее производные. Еще одна группа СО превращает одноосновный карбамид (мочевину) в двуосновное соединение оксамид CONH2 • CO • NH2.

Отрицательная комбинация кислорода и азота, которой можно заменить водород, - нитрогруппа NO2. Такая замена выливается в семейство, известное как нитропарафины. Типичным представителем этого семейства является 1-нитропропан CH3 • (CH2)2 • NO2. У нитропарафинов группа NO – это комбинация положительного азота (валентность +3) и отрицательного кислорода (-2 каждый). Изомерное семейство соединений - алкил нитриты - включает группу ONO, у которой один атом кислорода с усиленной нейтральной валентностью +4 и атом азота с обычной валентностью (–3) образуют одновалентный, положительный радикал ON. Дальнейшая комбинация с отрицательным кислородом создает одновалентный, отрицательный радикал ONO. В обычных условиях (CO • CO) комбинация CO • NO2 пребывает вне магнитных, нейтральных пределов, и нет серий соединений CO • NO2, соответствующих сериям, основанным на CO•NH2.

У соединений четвертичного аммония азот обладает нейтральной валентностью 5, как у неорганических нитратов, и соединяется с эквивалентом пятивалентных, отрицательных атомов или радикалов для формирования соединений, начиная с простых комбинаций, таких как гидроксид тетраметиламмония N(CH3)4 • OH, и кончая очень сложными и биологически важными соединениями, такими как лецитин. Четвертичная часть аммония в молекуле лецитина N(CH3)3OH • CH2• CH2• OH существует и отдельно, так же как хлор.

Прибавление кислорода к радикалам цианида и изоцианида создает радикалы OCN и ONC, образующие основу цианатов и изоцианатов. Сравнение цианидов и цианатов хорошо иллюстрирует способ, которым разные уместные факторы входят в строительство химических соединений. Каждый элемент обладает несколькими возможными ориентациями вращения, которые он может принимать для формирования химических соединений. В каждой ориентации он обладает действующим смещением скорости или валентностью, определяющей статус элемента в соединении и отношение, в котором он сочетается с другими компонентами. Одни ориентации вероятнее, чем другие, но вид самой устойчивой комбинации не может определяться преимущественно на основе вероятности, поскольку в ситуацию входят и другие факторы. Один из факторов – ограничение на прямые комбинации из-за относительной отрицательности составляющих. Другой фактор – относительно б о льшая вероятность групп с низкими валентностями в радикалах. Значимым фактором является и способность к замещению. Одновалентный радикал – не только более вероятная структура, чем радикал с более высокими валентностями. Он обладает способностью свободного замещения атомов водорода, а радикалы с более высокой валентностью выполняют замещения лишь с определенным трудом. Следовательно, в окружении, благоприятном для замещений (если он может сформироваться), одновалентный радикал обладает преимуществом.

В любом конкретном примере, если имеются два или более возможных способа строительства одновалентного радикала, именно общее влияние всех действующих факторов определяет, какая из возможных комбинаций обладает наибольшей вероятностью и, соответственно, наибольшей устойчивостью. При надлежащих условиях, если преимущество одной структуры над другой невелико, могут существовать обе структуры. Но если преимущество велико, может существовать только более устойчивое соединение. У цианидов общий итог всех факторов, влияющих на комбинацию углерода и азота, благоприятствует углероду с валентностью +2 и азоту с валентностью (–3). Альтернатива с углеродом (–4) и азотом +3 достаточно закрыта, чтобы быть устойчивой. Если к любому радикалу прибавляется кислород с валентностью (–2), положительная валентность должна увеличиться на две единицы так, чтобы результат обладал одновалентной заменой для отрицательного водорода. Это возможно в обоих случаях, поскольку и углерод и азот обладают требующимися более высокими валентностями. Углерод движется из первичной магнитной валентности +2 в CN в обычную валентность +4 в OCN. Азот движется из усиленной нейтральной валентности +3 в NC в нейтральную валентность +5 в ONC. Отрицательные валентности не меняются: азот обладает валентностью (–3) в CN и OCN, углерод – валентностью (–4) в NC и ONC.

Участие элементов групп с более высокими вращениями в химических соединениях не включает новых структурных характеристик. В группах с более высоким вращением за счет таких факторов, как более высокие магнитные валентности, б о льшие межатомные расстояния и преимущество распределений трехмерных сил, элементы исключаются из многих видов комбинаций и структур, в которых участвуют элементы Группы 2А. Но в той степени, в какой они могут занимать положения в комбинациях и структурах, они делают это на той же основе, что и аналогичные элементы Группы 2А. Следовательно, описания разных видов комбинаций и структур, описанных на предыдущих страницах, относятся и к соединениям элементов более высоких групп, а также к особо упомянутым элементам.

Сера больше всего подходит к дублированию структур более низкой группы. Соответствующий элемент группы 2А – кислород - почти целиком пользуется ее отрицательной валентностью. И в той степени, в какой позволяют межатомные расстояния, сера, обладающая валентностью (–2), дублирует соединения кислорода. В соответствии со спиртами, кислотами, эфирами, амидами и так далее, которые обсуждались на предыдущих страницах, имеются тиаспирты, тиакислоты, тиаэфиры, тиаамиды и так далее. Они идентичны за исключением того, что кислород заменяется серой.

Межатомное расстояние C-S больше, чем расстояние С-О. Поэтому соединения серы менее устойчивы, чем их кислородные аналоги, что довольно сильно ограничивает общее количество таких соединений. Значимое положение здесь таково: расстояние C-S не позволяет формирование нейтральных групп CS и замену нейтрального СО на CS. Это устраняет вероятность наличия семейств соединений серы, аналогичных семействам кислорода, чьими отрицательными радикалами являются CO • OH, CO • NH2, CO • OCH3 и так далее. Имеются тиакислоты, но их радикал не CS • OH или CS • SH, а CO • SH. Хотя представляется, что формула соединения, записанная в соответствии с нынешней практикой, указывает на присутствие группы CS в нейтральном положении, на самом деле, это двухвалентная комбинация, образующая часть положительного радикала. Таким образом, тиаацетамид и тиамочевина, обычно представленные в виде CH3 • CS • NH2 и NH2 • CS • NH2, на самом деле являются CSCH3 • NH2 и CSNH2 • NH2. Ни CSOH, ни CSSH не исключают действия в качестве одновалентного, положительного радикала - положения, в котором межатомное расстояние не является контролирующим фактором, но оба они ограничены в стабильности. CSOH имеет тенденцию переорганизовываться в более вероятную форму COSH2, а CSSH чувствителен к потере молекулы CS. Например, ксантиковая кислота CSSH • (O • CH2 • CH3) спонтанно делится на CS и этиловый спирт.

Еще один пример смещения валентностей путем прибавления сильно отрицательного элемента – окисление сульфидов. У сульфида метила (CH3)2S сера обладает обычной валентностью (–2). Вследствие того, что она положительна к кислороду, окисление помещает ее в положительное положение в соединении с валентностью +4 и группами CH3, способными совершать сдвиг +1 или –1 в сторону отрицательности. Результат - метил сульфоксид SO(CH2 • H)2. Дополнительный атом кислорода получается за счет дальнейшего сдвига валентности серы до максимальной величины +6 (нейтральная валентность). Новое соединение – метил сульфон SO(CH2 • H)2.

Радикалы единичных элементов, такие как N3(N+5 • N-3 • N-3) и C2(C+2• C•-4), следуют тому же паттерну поведения, что и другие радикалы. Эти конкретные комбинации образуют соответственно азиды и карбиды. Поскольку карбиды не содержат никаких элементов кроме углерода и водорода, они относятся к семейству углеводородов, хотя со структурной точки зрения введение радикала C2 в обычный углеводород эквивалентно замещению любым другим радикалом. Поэтому, логически, возникающие соединения должны называться карбидами. Карбидная структура очевидна у таких соединений как (CH • CH2)2 • C2. Эта структура называется дивинилацетилен или 1,5 гексадиен-3-ин. Здесь валентное равновесие такое же, как у бинарных карбидов: CaC2 и так далее. Однако, как указывалось раньше, соображения вероятности благоприятствуют одновалентным радикалам везде, где они возможны. У углеводородов комбинация C2 обычно объединяется с положительным атомом водорода для образования одновалентного радикала C2H, структурно аналогичного ОН. Соединениями, пользующимися этим радикалом, могут быть либо олефины (например, винилацетилен CH • CH2 • C2H), либо ацетилены (например, бутадиен C • CH • C2H). Магнитно-нейтральные группы могут прибавляться обычным способом, образуя такие соединения как 1,5 гексадиен C • CH • CH2 • CH2 • C2H. Это соединение известно и как дипропаргил - изомер бензола. Оно привлекало большое внимание в начале появления структурной химии, когда “проблема бензола” находилась в центре внимания.

Самый первый результат действия воды на карбид кальция - простой карбид H • C2H. Поскольку водород отрицателен к углероду, соединение углерода и положительного водорода неустойчиво, и карбидо-водород стразу же меняется на ацетилен, у которого атомы водорода отрицательные. В этих сериях реакций очень интересны изменения валентности. У первичного карбида кальция валентности таковы: Ca +2, C+2, C-4. Реакция с водой заменяет два +1 атома водорода на кальций. Затем относительная отрицательность углерода и водорода помещает водород в отрицательное положение, и, поскольку общая отрицательная валентность составляет лишь две единицы, для достижения равновесия углерод вынужден принимать валентность +1.

Хотя у органических соединений трехмерные неорганические радикалы типа SO4 не способны свободно заменяться водородом по способу органических радикалов, органические цепи могут заменять атомы, присоединяющиеся к трехмерным радикалам в неорганических соединениях. Иными словами, в двумерной структуре нет места трехмерному компоненту, но двумерная комбинация может занимать положение в трехмерной структуре. Типичными соединениями являются этил сульфат (CH3 • CH2)2 • SO4 и метил фосфат (CH3)3 • PO4.

Соединения металлов с органическими радикалами обычно группируются в отдельную категорию - металлоорганические соединения. В этой работе они классифицируются как органические потому, что обладают обычной органической структурой. Соединение этил натрия Na • CH2 • CH3, обладает той же структурой, что и соответствующий углеводород парафина - пропан CH3 • CH2 • CH3. Соединение дифенил олова обладает той же структурой, что и дифенил метан – одно из ароматических кольцевых соединений, которые мы будем обсуждать в главе 21. Следовательно, при обсуждении молекулярной структуры, не требуется отдельного рассмотрения ни металлоорганических соединений, ни соединений органических и неорганических компонентов.

Количество и разнообразие цепных соединений может значительно увеличиваться за счет дополнительного ветвления посредством комбинирования разных уже обсужденных заместителей и использования некоторых менее обычных заместителей. Все соединения следуют структурным принципам, выведенным для самых обычных органических цепных семейств. Структурные изменения могут происходить и с помощью некоторых дополнительных способов. Поэтому было бы желательно дополнить молекулярную картину некоторыми комментариями. Но поскольку комментарии одинаково относятся и к кольцевым соединениям, уместно отложить их обсуждение до тех пор, пока мы не исследуем кольцевые структуры.

Глава 21






Не нашли, что искали? Воспользуйтесь поиском:

vikidalka.ru - 2015-2024 год. Все права принадлежат их авторам! Нарушение авторских прав | Нарушение персональных данных